С

3

9

9

0

ANTENNAS AND MICROWAVE ENGINEERING EC8701 L Т Р 3 0 0

OBJECTIVES:

- To enable the student to understand the basic principles in antenna and microwave system design
- To enhance the student knowledge in the area of various antenna designs
- To enhance the student knowledge in the area of microwave components and antenna for practical applications.

INTRODUCTION TO MICROWAVE SYSTEMS AND ANTENNAS UNIT I 9

Microwave frequency bands, Physical concept of radiation, Near- and far-field regions, Fields and Power Radiated by an Antenna, Antenna Pattern Characteristics, Antenna Gain and Efficiency, Aperture Efficiency and Effective Area, Antenna Noise Temperature and G/T, Impedance matching, Friis transmission equation, Link budget and link margin, Noise Characterization of a microwave receiver.

UNIT II **RADIATION MECHANISMS AND DESIGN ASPECTS**

Radiation Mechanisms of Linear Wire and Loop antennas, Aperture antennas, Reflector antennas, Microstrip antennas and Frequency independent antennas, Design considerations and applications.

UNIT III **ANTENNA ARRAYS AND APPLICATIONS**

Two-element array, Array factor, Pattern multiplication, uniformly spaced with arrays uniform and non-uniform excitation amplitudes, Smart antennas.

PASSIVE AND ACTIVE MICROWAVE DEVICES UNIT IV

Microwave Passive components: Directional Coupler, Power Divider, Magic Tee, attenuator, resonator, Principles of Microwave Semiconductor Devices: Gunn Diodes, IMPATT diodes Schottky Barrier diodes, PIN diodes, Microwave tubes: Klystron, TWT, Magnetron. 9

MICROWAVE DESIGN PRINCIPLES UNIT V

Impedance transformation, Impedance Matching, Microwave Filter Design, RF and Microwave Amplifier Design, Microwave Power amplifier Design, Low Noise Amplifier Design, Microwave Mixer Design, Microwave Oscillator Design

OUTCOMES:

The student should be able to:

- Apply the basic principles and evaluate antenna parameters and link power budgets
- Design and assess the performance of various antennas
- Design a microwave system given the application specifications.

TEXTBOOKS:

1. John D Krauss, Ronald J Marhefka and Ahmad S. Khan, "Antenna and Wave Propagation: Fourth Edition, Tata McGraw –Hill, 2006. (UNITI, II, III)

2. David M.Pozar, "Microwave Engineering", Fourth Edition, Wiley India, 2012. (UNIT I, IV, V).

REFERENCES:

1. Constantine A.Balanis,"Antenna Theory Analysis and Design", Third edition, John Wiley India Pvt Ltd., 2005.

2. R.E.Collin, "Fundamentals for Microwave Engineering", Second edition, IEEE Press, 2001.

Mian	UNIT I INTRODUCTION TO MICROWAVE SYSTEMS AND ANTENNAS
Micro Radi	owave frequency bands, Physical concept of radiation, Near- and far-field regions, Fields and Power ated by an Antenna, Antenna, Pattern, Characteristics, Antenna, Gain, and Efficiency, Aperture
Effic	iency and Effective Area. Antenna Noise Temperature and G/T. Impedance matching. Friis
transi	mission equation, Link budget and link margin, Noise Characterization of a microwave receiver.
	UNIT-I / PART-A
1.	Sketch electromagnetic frequency spectrum showing the location of RF and Microwave
	frequency bands.
	← SOUND RADIO LIGHT HARMFUL RADIATION →
	THE RADIO SPECTRUM
	ELF VLF LF MF HF VHF UHF SHF EHF IR UV X-RAY GAMMA-RAY COSMIC-
	ISM = Industrial, Scientific and Medical UWB = Ultra Wide Band AC CELLULAR
	VHF = VERY HIGH FREQUENCY 2.4 GHz 56-100 GHz UHF = ULTRA HIGH FREQUENCY 2.4 GHz 56-100 GHz
	SHF = SUPER HIGH FREQUENCY ISM bands EHF = EXTREMELY HIGH FREQUENCY 315-915 MHz UWB
	30 km 0.3 km 3 m 3 cm
	AM Broadcast
	··Sonics A Illtra-sonics
	10 kHz 1 MHz 100 MHz 10 GHz
2.	What are microwaves?(NOV/DEC 2021)
	Microwaves are electromagnetic waves (EM) with wavelengths ranging from 1mm to
2	Im. The corresponding frequency range is 300MHz to 300 GHz.
3.	(i) If charge is moving with a uniform velocity (current created):
	a There is no radiation if the wire is straight and infinite in extent
	b. There is radiation if the wire is curved bent discontinuous terminated or
	truncated
	(ii) If charge is oscillating in a time-motion, it radiates even if the wire is straight
4.	Define reactive near field region of antenna.
	Reactive near-field region is defined as "that portion of the near-field region immediately
	surrounding the antenna wherein the reactive field predominates." For most antennas, the outer
	boundary of this region is commonly taken to exist at a distance $R < 0.62 \sqrt{D^3/\lambda}$ from the
	antenna surface, where λ is the wavelength and D is the largest dimension of the antenna.
5.	Define radiating near field region(Fresnel region) of antenna.
	Radiating near-field (Fresnel) region is defined as "that region of the field of an antenna between the reactive near field region and the far field region wherein radiation fields predominate and
	wherein the angular field distribution is dependent upon the distance from the antenna.
	The inner boundary is taken to be the distance $R \ge 0.62 \sqrt{\frac{D^3}{\lambda}}$ and the outer boundary is taken to
	be the distance $R < 2D^2/\lambda$ where D is the largest dimension of the antenna.
6.	be the distance $R < 2D^2/\lambda$ where D is the largest dimension of the antenna. Define far field(Fraunhofer) region of antenna
6.	be the distance $R < 2D^2/\lambda$ where D is the largest dimension of the antenna. Define far field(Fraunhofer) region of antenna Far-field (Fraunhofer) region is defined as "that region of the field of an antenna where the angular
6.	be the distance $R < 2D^2/\lambda$ where D is the largest dimension of the antenna. Define far field(Fraunhofer) region of antenna Far-field (Fraunhofer) region is defined as "that region of the field of an antenna where the angular field distribution is essentially independent of the distance from the antenna. If the antenna has a

EC8701	1-Antennas and Microwave Engineering Department of ECE	2022-2023
7.	A parabolic reflector antenna used for reception with the direct b	roadcast system (DBS) is
	18 inches in diameter and operates at 12.4 GHz. Find the far-field d	istance for this antenna.
	The operating wavelength at 12.4 GHz is $\lambda = c/f = (3 \times 10^8)/(12.4)$	$\times 10^9$) = 2.42 cm.
	D= 18 inches= $18 \times 0.0254 = 0.457 \text{m}$	
	The far-field distance is $R_{\rm ff} = 2D^2 / \lambda = 2(0.45/)^2 / 0.0242 = 1/.3$ m.	
8.	Define Radiation Intensity. What is it's significance?	
	Radiation Intensity $U(\theta, \emptyset)$ in given direction is defined as the	power per unit solid angle
	in that direction.	
	• The power radiated per unit area in any direction is given by point Fan distant field for which F and H are atthe analysis a share as	nting vector P.
	• For distant field for which E and H are orthogonal in a plane no. \mathbb{R}^2	rmai to the radius vector,
	The power flow per unit area is given by $P = \frac{E^2}{2}$ watts / same	
	η_{v}	, ,
	• There are r^2 square meters of surface area per unit solid angle(or s	teradian).
	• $U(\theta, \phi) = r^2 P = \frac{r^2 E^2}{2} watts / unit solid angle$	
	The rediction intersity since the variation in redicted nerver variables	aition around the enterne
	We can find the total power radiated by the antenna by integrating the	a Poynting vector over the
	surface of a sphere that encloses the antenna. This is equivalent to	integrating the radiation
	intensity over a unit sphere	, integrating the radiation
	$\frac{2\pi}{\pi}$	
	$P_{rad} = Power radiated = \int \int U(\theta, \phi) \sin\theta d\theta d\phi$	
	$\int \int \partial (\phi, \rho) \partial (\phi, $	
0	Define Radiation nattern	
).	The radiation pattern of an antenna is a plot of the magnitude of	the far-zone field strength
	versus position around the antenna at a fixed distance from the antenna	the full zone field strength
	Thus the radiation pattern can be plotted from the pattern ful	nction $F_{\theta}(\theta, \phi)$ or $F_{\phi}(\theta, \phi)$.
	versus either the angle θ (for an elevation plane pattern) or the angle	φ (for an azimuthal plane
	pattern). The choice of plotting either F_{θ} or \hat{F}_{ϕ} is dependent on the polar	ization of the antenna.
10.	Define Half Power Beam Width (HPBW) of an antenna.	
	Half Power Beam Width is a measure of directivity of an ante	enna. It is an angular width
	in degrees, measured on the radiation pattern (main lobe) between point	s where the radiated power
	has fallen to half its maximum value.	
	HALF POWER	
	() () () () () () () () () ()	
	aus	
11.	Define beam solid angle.	
	The beam area or beam solid angle Ω_A for antenna is given by the solid angle Ω_A for an ten by	ven by integral of the
	normalized power pattern over a sphere	fon of integral of the
	$\frac{2\pi \pi}{2}$	
	$\Omega_{\Lambda} = \int \int P_{\nu}(\theta, \phi) d\Omega \qquad steradian$	
	$P_n(\theta,\phi) = Normalized power pattern$	
	Beam solid angle is also given approximately by	
	$\Omega_A = \theta_{HP} \phi_{HP}$ steradian	
	$\theta_{HP} = HPBW$ in $E - plane$ or θ plane	
	$\phi_{HP} = HPBW$ in $H - plane$ or ϕ plane	

EC8/01	-Antennas and Microwave Engineering Department of ECE 2022-2023
12.	Define Beam Width between First Null.
	Beam width between first null (BWFN) is the angular width in degrees, measured on the radiation pattern between first null points on either side of the main labe
	Tadiation pattern between first nun points on enner side of the main lobe.
	I D HALF POWER
	MINOR POINTS
	LOBES MAIN LOBE
	0.9-21-4 1-6 1.0 AXIS
	BEAM WIDTH (0)
	BEAM WIDTH POWER POINTS
	NULLS (BWFN)
10	
13.	Define main lobe, side lobe, minor lobe and back lobe with reference to antenna radiation
	Major Lobe : Major lobe is also called as main beam and is defined as "the radiation lobe.
	containing the direction of maximum radiation" In some antennas, there may be more than one
	major lobe.
	Minor lobe: All the lobes except the major lobes are called minor lobe.
	Side lobe: A side lobe is adjacent to the main lobe.
	Back lobe : Normally refers to a minor lobe that occupies the hemisphere in a direction opposite to
	that of the major(main) lobe.
	Minor lobes normally represents radiation in undesired directions and they should be minimized.
	MAJOR LOBE
	HALF POWER
	BEAM WIDTH
	SIDE LOBE
	MINOR LOBE
	BACK LOBE
	A ANE
	AZIMUTH PLA
14.	Define directivity of an antenna.
	The directivity(D) of an antenna is defined as the ratio of the maximum value of the
	That is directivity is ratio of the maximum radiation intensity in the main beam to the average
	radiation intensity over all space
	U_{max} U_{max} $4\pi U_{max}$
	$D = \frac{max}{U_{ava}} = \frac{max}{P_{rad}} = \frac{max}{\int_{-\infty}^{2\pi} \int_{-\infty}^{\pi} U(\rho, \phi) \sin \rho d\rho d\phi}$
	$J_{\phi=0} J_{\theta=0} J_{\theta$
	Thus, the directivity measures how intensely the antenna radiates in its preferred direction than an
	isotropic radiator would when led with the same total power. Directivity is a dimensionless ratio of power, and is usually expressed in dB as $D(dB) = 10 \log(D)$.
15	What do you mean by an isotronic radiator? What is the directivity of isotronic radiator?
15.	An isotropic radiator is a hypothetical loss less radiator having equal radiation in all
	directions.
	$U(\theta,\phi) = 1$ for isotropic antenna. Applying the integral identity. $\int_{a}^{2\pi} \int_{a}^{\pi} sin\theta d\theta d\phi = 4\pi$, we
	have.
	$4\pi U_{max}$
	$\nu = \frac{1}{\int_{-\infty}^{2\pi} \int_{-\infty}^{\pi} \frac{U(\theta, \phi) \sin\theta d\theta d\phi}{1}} = 1$
	$J_{\emptyset=0} J_{\theta=0} = 0$ (0, g)structure The directivity of an isotropic antenna is $D = 1$ or 0 dB
1 1	The uncentry of an isotropic uncentra is $D = 1$, of 0 ab.

16.	What is the Relationship between Directivity and beamwidth?
	Beamwidth and directivity are both measures of the focusing ability of an antenna. An antenna
	pattern with a narrow main beam will have a high directivity, while a pattern with a wide beam
	will have a lower directivity.
	Approximate relation between beam width and directivity that apply with reasonable
	accuracy for antennas with pencil beam patterns is the following:
	$D \cong \frac{\theta_1}{\theta_2}$ where θ_1 and θ_2 are the beam widths in two orthogonal planes of the main
	beam, in degrees. This approximation does not work well for omnidirectional patterns because
	there is a well-defined main beam in only one plane for such patterns.
17.	Define omnidirectional antenna. Give its appliccations.
	Antennas having a constant pattern in the azimuthal plane are called omnidirectional, and are
	useful for applications such as broadcasting or for hand-held wireless devices, where it is desired
	to transmit or receive equally in all directions.
18.	Define pencil beam antenna and give its applications.
	Antennas with radiation pattern that have relatively narrow main beams in both planes are known
	as pencil beam antennas.
	Pencil beam antenna are useful in applications such as radar and point-to-point radio links.
19.	Define radiation efficiency of antenna.
	Radiation efficiency of an antenna is defined as the ratio of the radiated output power to the
	supplied input power.
	P_{rad} $P_{in} - P_{loss}$ P_{loss}
	$\eta_{rad} = \frac{1}{P_{in}} = \frac{1}{P_{in}} = 1 - \frac{1}{P_{in}}$
	where P_{rad} is the power radiated by the antenna, P_{in} is the power supplied to the input of the
	antenna, and P_{loss} is the power lost in the antenna(dissipative losses) due to metal conductivity or
	dielectric loss with in the antenna.
20.	Define gain of an antenna. What is the significance of gain of an antenna?/
	Relate the gain and directivity of an antenna through proper expression. (NOV/DEC 2021)
	The gain of the antenna is closely related to the directivity, it is a measure that takes into account
	the efficiency of the antenna as well as its directional capabilities.
	Antenna gain is defined as the product of directivity and efficiency:
	$Gain = G = \eta_{rad} \times D.$
	Thus, gain is always less than or equal to directivity.
21.	Define aperture efficiency.
	Aperture efficiency is defined as the ratio of the actual directivity of an aperture antenna to the
	maximum directivity of aperture antenna.
	The maximum directivity that can be obtained from an electrically large aperture of area A is
	given as $D = \frac{4\pi A}{2}$
	given as, $D_{max} = \frac{1}{\lambda^2}$
	$n_{ab} = aperture efficient =$
	D _{max}
22.	Define effective aperture area. What is the relation between effective aperture area and
	Directivity(gain)?
	Received power is proportional to the power density, or Poynting vector, of the incident wave.
	Since the Poynting vector has dimensions of W/m^2 , and the received power, P_r , has dimensions of
	w, the proportionality constant must have units of area.
	we have, $P_r = A_e \times S_{avg}$
	where A_e is defined as the effective aperture area of the receive antenna. The effective aperture
	area has dimensions of m^2 , and can be interpreted as the "capture area" of a receive antenna,
	intercepting part of the incident power density radiated toward the receive antenna.
	The maximum effective aperture area of an antenna is related to the directivity of the antenna as,
	$A = \frac{D\lambda^2}{2}$
	$n_e = 4\pi$
	The maximum effective aperture area as defined above does not include the effect of losses in the
	antenna, which can be accounted for by replacing D with G, the gain, of the antenna.

23.	Define Antenna Brightness temperature
	When the antenna beam width is broad enough that different parts of the antenna pattern see
	different background temperatures, the effective brightness temperature seen by the antenna can
	be found by weighting the spatial distribution of background temperature by the pattern function
	of the antenna.
	Mathematically we can write the brightness temperature T_b seen by the antenna as
	$\int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} T_B(\theta, \phi) D(\theta, \phi) \sin\theta d\theta d\phi$
	$I_b = \frac{1}{\int_{-\infty}^{2\pi} \int_{-\infty}^{\pi} D(\theta, \phi) \sin\theta d\theta d\phi}$
	Where $T_{-}(\theta, \phi)$ is the distribution of the background temperature and $D(\theta, \phi)$ is the directivity
	(or the power pattern function) of the antenna. Antenna brightness temperature is referenced at the
	terminals of the antenna. Observe that when T_B is a constant, $T_b = T_B$
24.	What is the significance of G/T ratio?
	Useful figure of merit for receive antennas is the G/T ratio, defined as $10 \log(G/T_A) dB/K$,
	where G is the gain of the antenna, and T_A is the antenna noise temperature.
	This quantity is important because, the signal-to-noise ratio (SNR) at the input to a receiver
	is proportional to G/T _A . The ratio G/T can often be maximized by increasing the gain of the
	antenna, since this increases the numerator and usually minimizes reception of noise from hot
	sources at low elevation angles. Of course, higher gain requires a larger and more expensive
	antenna, and high gain may not be desirable for applications requiring omnidirectional coverage
	(e.g., cellular telephones or mobile data networks), so often a compromise must be made.
25.	State why impedance matching(tuning) is important.
	Impedance matching or tuning is important for the following reasons:
	(i) Maximum power is delivered when the load is matched to the line (assuming the
	generator is matched), and power loss in the feed line is minimized.
	(ii) Impedance matching sensitive receiver components (antenna, low-noise amplifier, etc.)
	may improve the signal-to-noise ratio of the system
	(iii) Impedance matching in a power distribution network (such as an antenna array feed
	(iii) impedance matching in a power distribution network (such as an antenna array reed
26	Cive the Entity reduce amplitude and phase errors.
20.	Give the Frits ratio link formula.
	$P_r = \frac{G_r r_t G_t \lambda}{(t-\lambda)^2}$
	$(4\pi r)^2$
	P_r = Received power (antenna matched) in W
	P_t = power in to transmitting antenna in w A = Effective executive of transmitting entenne m^2
	A_{et} – Effective aperture of Receiving antenna, m ²
	$r_{\rm eff}$ = Effective aperture of Receiving antenna, in $r_{\rm eff}$
	λ = wave length, m
27.	Define EIRP. What is the significance of this quantity?
	The product $P_t G_t$ is defined as the Effective Isotropic Radiated Power (EIRP).
	$EIRP = P_t G_t W$
	For a given frequency, range, and receiver antenna gain, the received power is proportional to the
	EIRP of the transmitter and received power can only be increased by increasing the EIRP. This
	can be done by increasing the transmit power, or the transmit antenna gain, or both.
28.	Define path loss.
	Path loss is the quantity that account for the free-space reduction in signal strength with distance
	between the transmitter and receiver.
	Path loss= 1 ransmitted power- Received power= $P_t - P_r$
	Assuming unity gain antennas, path loss is given as (using Friis formula) $(4\pi r)$
	path loss $(dB) = 20 \log\left(\frac{4\pi T}{2}\right)$
1	

EC8701	-Antennas and Microwave Engineering Department of ECE 2022-2023
29.	Define link margin
	In practical communications systems it is usually desired to have the received power level greater than the threshold level required for the minimum acceptable quality of service (usually expressed as the minimum carrier-to-noise ratio (CNR), or minimum SNR).
	This design allowance for received power is referred to as the link margin, and can be expressed as the difference between the design value of received power and the minimum threshold value of receive power:
	Link margin (dB) = LM = $P_r - P_r(min) > 0$, where all quantities are in dB.
	Link margin should be a positive number; typical values may range from 3 to 20 dB.
	Having a reasonable link margin provides a level of robustness to the system to account for variables such as signal fading due to weather, movement of a mobile user, multipath propagation problems, and other unpredictable effects that can degrade system performance.
30.	Define fade margin.
	Signal fading occur due to weather, movement of a mobile user, multipath propagation
	problems, and other unpredictable effects that can degrade system performance and quality of
	service. Link margin that is used to account for fading effects is sometimes referred to as fade
- 21	margin.
31.	How link margin for a given communication system can be improved?
	received power (by increasing transmit power or antenna gains) or by reducing the minimum
	threshold power (by improving the design of the receiver, changing the modulation method, or by
	other means)
32.	32. What is point-to-point communication. Mention some of its application.
	• In a point-to-point radio system a single transmitter communicates with a single receiver.
	Such systems generally use high-gain antennas in fixed positions to maximize received
	power and minimize interference with other radios that may be operating nearby in the
	same frequency range.
	• Point-to-point radios are typically used for satellite communications, dedicated data
	communications by utility companies, and backhaul connection of cellular base stations to
	a central switching office.
33	An antenna has a field pattern given by $E(\theta) = \cos^2 \theta$ for $0^\circ < \theta < \pi$. Find Half Power Beam
551	Width (HPBW). (Nov 20)
	$E(\theta)$ at half power = 0.707.
	$\cos^2\theta = 0.707$
	so, $cos\theta = \sqrt{0.707}$
	and $\theta = 33^{\circ}$
	$HPBW = 2\theta = 66^{\circ}$
	$E(n) = \cos^{n} n$

EC8701	-Antennas and Microwave Engineering Department of ECE 2022-2023
34.	What is Link Budget ? Mention a simple Link Budget equation.
	The link budget is a summary of the transmitted power along with all the gains and losses
	in the communication system and this enables the strength of the received signal to be calculated.
	Using this knowledge, it is possible to determine whether newer and gain levels are
	sufficient too high or too low and then apply corrective action to ensure the system will operate
	satisfactorily
	satisfactority.
	Simple link Budget equation:
	$P_r(dBm) = P_t - L_t + G_t - L_0 - L_A + G_r - L_r$
	Where,
	Transmit power D
	Transmit power r_t Transmit antenna line loss $(-)L$
	Transmit antenna gain G_{t}
	Path loss (free-space) $(-)L_0$
	Atmospheric attenuation $(-)L_A$
	Receive antenna gain G_r
	Receive antenna line loss $(-)L_r$
	Receive power P_r
	LINIT I / DADT R
1.	Explain in detail, the physical concept of radiation. Illustrate with necessary diagrams, how the
	electromagnetic fields guided within the transmission line and antenna. finally get "detached"
	from the antenna to form a free-space wave.
2	Explain in detail the field regions of antenna. What is the significance of Eraunhofer zone?
2.	Define and explain in detail the terms Gain Directivity beam width Bandwidth and Polarization
5.	of an antenna
4	Define and describe the following parameters of an antenna:
т.	(i)Radiation Pattern (ii)Radiation intensity (iii)Directivity (iv)Effective aperture
5	Define and explain the significance of the following antenna parameters:
5.	(i) Antenna brightness temperature (ii) Antenna noise temperature
	(iii) Antenna Efficiency (iv)Half Power Beam width
6.	(i) How are antennas classified based on radiation characteristics? Explain with an example, the
	radiation pattern characteristics of omnidirectional antenna.
	(ii) Explain in detail about: 1) Radiation pattern lobes 2) Aperture efficiency 3) Beam solid angle
7.	(i)Derive FRIIS transmission formula.
	(ii) A radio link has a 20 W transmitter connected to an antenna of 2.5 m^2 effective aperture at 5
	GHz. The receiving antenna has an effective aperture of 0.5m ² and is located at a 15 Km line of
	sight distance from the transmitting antenna. Assuming lossless, matched antennas, find the power
	delivered to the receiver. (Nov 2019)
8.	Explain the various loss and gain terms considered in the microwave link budget. Also discuss on
	the significance of link margin and fade margin of a communication system.
9.	Define and explain the various parameters used to analyse the noise characteristics of a microwave
	receiver.
10	Discuss on the noise analysis of a Microwave receiver front end including antenna and
10.	transmission line contributions
11	Obtain expression for the field and nower radiated by an assellating dipole and calculate the
11.	rediction resistance (New 2020)
	radiation resistance. (Nov 2020)

12.	i) What is impedance matching ? Explain about the techniques used to solve the impedance
	matching problems.
	ii) Using Friss transmission formula find the maximum power received at a distance of 1 Km over
	a free space. A 100 MHz circuit consisting of a transmitting antenna of 30 dB gain and a receiving
	antenna with a 25 dB gain is used. The power input to the transmitting antenna is 150 W. (Nov
13	(i)Define and explain the significance of the following antenna parameters:
15.	a Padiation registance b. Antanna temperatura
	a. Radiation resistance b. Antenna temperature
	(i) now are antennas classified based on radiation characteristics? inustrate with avamples (NOV/DEC 2021)
1.4	Examples. (NOV/DEC 2021)
14.	Examine the Noise Characterization of a microwave receiver. (NOV /DEC 2021)
Dul	UNIT II KADIATION MECHANISMS AND DESIGN ASPECTS
Kadia Mior	ation Mechanisms of Linear Wire and Loop antennas, Aperture antennas, Reflector antennas,
WIICIO	UNIT_II / DA DT_A
1	Civit-II / I ARI-A
1.	State Huygen's Principle.
	Huygens principle states that each point on a primary wave front can be considered to be a new
	source of a secondary spherical wave and that a secondary wave front can be constructed as the
	envelope of these secondary spherical waves ."
2.	State Babinet's principle and how it gives rise to the concept of complementary antenna?
	Babinet's principle states that the sum of the field at a point behind a plane having a screen and the field at the same point when a complimentary across is substituted is equal to the field at the
	no no screen is present. This principle can be applied to slot antenna analysis
3	State uniqueness theorem (May 2012)
5.	Uniqueness theorem states that, for a given set of sources and boundary conditions in a
	lossy medium, the solution to Maxwell's equations is unique.
4.	What is field equivalence principle? (May 2014)
	The field equivalence principle is based on the uniqueness theorem which states that "a field in a
	lossy region is uniquely specified by the sources within the region plus the tangential components
	of the electric field over the boundary, or the tangential components of the magnetic field over the
	boundary, or the former over part of the boundary and the latter over the rest of the boundary ."
5.	Draw various types of Horn antenna.
	Different types of horn antenna are: E-Plane sectoral horn, H-plane sectoral horn, Pyramidal horn,
	Conical horn
	Dea 1
	Ha
	H-plane sectoral horn
	E-plane sectoral horn Conical Horn Antenna
6	Distinguish between sectorial horn and nyramidal horn
0.	Distinguish between sectorial norn and pyramidal norn.
	• From america is a wave guide one end of which is fraced out. In pyramidal norn, the fracting is along F and H. It has the shape of a truncated pyramid
	• In sectoral horn, the flaring is along F or H. If flaring is along the direction of electric field
	it is called sectoral E-plane horn. If flaring is along the direction of magnetic field it is
	called sectoral H-plane horn.

7.	The aperture dimensions of a pyramidal horn are 12x6 cm and operating at a frequency of
	10 GHz. Find the beam width and directivity. (May 2013)
	Frequency = 10 GHz
	$\lambda = \frac{3 \times 10^8}{10^8} =$
	$n = \frac{10 \times 10^9}{3cm}$
	d = 12 cm and $w = 6$ cm
	$B_{\text{commutative}} = 56 \frac{\lambda}{2} = 14^{0}$
	$E = \frac{1}{E} d$
	$\phi = 67 \frac{\lambda}{2} = 33.5^{\circ}$
	H W
	$power gain = \frac{4.5wd}{36} = 36 = 15.56 dB$
	$\overline{\tau \cdot \lambda^2}$
	$Directivity = \frac{7.5Wd}{60} = 60$
	$\frac{1}{\lambda^2}$
8.	What are secondary antennas? Give two examples.
	Secondary antennas are one that needs a primary antenna to excite it.
	Eg: Reflector antenna, Lens antenna.
9.	What is a corner reflector?
	A corner reflector is made up of two flat-plate reflectors joined together to form a corner.
	The corner reflector is generally used in conjunction with a dipole or dipole array kept parallel to
10	the corner line. Corner reflector gives a higher directivity.
10.	What is the main advantage of Cassegrain reflector configuration?
	The main advantage is that the primary feed horn and the associated receiver or transmitter can be
	The processity of suppling long transmission lines or waveguides is also aliminated
	 The necessity of fullning long transmission lines of waveguides is also eminimated. Since the horn feed is kept behind the main reflector, one can afford to have a much larger.
	• Since the norm feed is kept behind the main fenector, one can afford to have a much farger aperture for the horn
11	What is the main disadvantage of Cassegrain reflector configuration?
11.	The main disadvantage of Cassegrain reflector configuration is the large aperture blockage
	by the sub-reflector. Hence, Cassegrain reflector configuration is used only for very large aperture
	antennas having gain greater than 40dB.
12.	What is slot radiator? What is its operating principle?
	When a slot in a large metallic plane is coupled to an R.F source, it behaves like a diploe
	antenna mounted over a reflecting surface. The slot is coupled to a feed line in such a manner that
10	E-field lies along the short axis of the slot.
13.	Write any two differences between slot antenna and its complementary dipole antenna.
	(1) First, the electric and magnetic fields are interchanged. In case of the dipole antenna the electric
	lines are horizontal while the magnetic lines form loops in the vertical plane. But in case of slot
	built up across the parrow dimensions of the slot. As a result, the polarization of the radiation
	produced by a horizontal slot is vertical and vertical slot is horizontal.
	(ii) Second, the direction of the lines of electric and magnetic force abruptly reverse from one side
	of the metal sheet to the other. In case of the dipole, the electric lines have the same direction
	while the magnetic line forms continuous loops.
14.	The impedance of an infinitesimally thin $\lambda/2$ antenna is 73+j42.5 Ω . Calculate the terminal
	impedance of an infinitesimally thin $\lambda/2$ slot antenna.(Nov/Dec 2015)
	$Z_{\rm s} = \frac{\eta_0^2}{12} = \frac{(3/7)^2}{12} = \frac{35532.25}{(22-i)^2} = 363.52 - i211.64\Omega$
	$4Z_c$ 4(73 + j42.5) (73 + j42.5)

15.	What is a microstrip antenna?
	A microstrip patch antenna is an antenna consisting of a thin metallic patch etched on the
	dielectric substrate using PCB technology. It is also referred as printed antenna. Its performance
	depends on shape (can be square, rectangular, triangular, circular) and size.
16.	What are the features of microstrip antennas?
	• Micro strip antennas are low profile, conformable to planar and nonplanar surfaces, simple
	and inexpensive to manufacture using modern printed-circuit technology, mechanically
	robust when mounted on rigid surfaces, compatible with MMIC designs, and when the
	particular patch shape and mode are selected, they are very versatile in terms of resonant
	frequency, polarization, pattern, and impedance.
	• In addition, by adding loads between the patch and the ground plane, such as pins and
	varactor diodes, adaptive elements with variable resonant frequency, impedance,
	polarization, and pattern can be designed.
17	What are the major operational disadvantages of microstrip antennas?/
17.	Point out the limitations of microstrin natch antennas (NOV/DEC 2021)
	Major operational disadvantages of microstrip antennas are their low efficiency low power high
	Major operational disadvantages of increasing antennas are then low efficiency, low power, high Ω (sometimes in excess of 100) near polarization purity, near scan performance, spurious feed
	Q (sometimes in excess of 100), poor polarization purity, poor scan performance, spurious red
10	
18.	List the different methods of feeding Microstrip antenna.
	(1) microstrip line feed (11) coaxial probe feed
10	(iii) aperture coupling (iv) proximity coupling
19.	Define the bandwidth of antenna. The hand width of antenna is defined as "The range of frequencies within which the
	performance of the antenna, with respect to some characteristics [input impedance heam width
	polarization side lobe level gain etc. confirms to a specified standard'
20.	What is wide band antenna? Give an example.
	Antennas which maintain certain required characteristics like gain, front to back ratio,
	SWR, Polarization, input impedance and radiation pattern over wide range of frequencies are
	called wide band or broad band antennas. Log periodic antenna is a broadband antenna.
21.	State Rumsey principle on frequency independence.(April/May 2017)
	Rumsey's principle states that the impedance and radiation pattern properties of an antenna will
	be frequency independent if the antenna shape is specified only in terms of angles.
22	What is I DDA?
<i>LL</i> .	IPDA is log periodic dipole array. It is unidirectional broadband multi element narrow
	beam frequency independent antenna that has impedance and radiation characteristics that are
	regularly repetitive as a logarithmic function of frequency.
23.	Why is log periodic antennas called so?
	Log periodic antennas are called so, because, it is an array antenna which has structural
	geometry such that its impedance and radiation characteristics are periodic with the logarithm of
	the frequency.
24.	Calculate the beam width between first nulls of a 2.5 m paraboloid reflector used at 6 GHz.
	(Nov 20)
	f = 6GHz
	$\lambda = \frac{3 \times 10^{\circ}}{10^{\circ}} = 0.05m$
	6×10^9
	$BWFN = 140 \times \frac{1}{D} = \frac{1}{2.5} = 2.8^{\circ}$
25.	What is aperture blockage ? Give one example. (Nov 20)
	Aperture blockage is the effect of antenna parts lying in the path of rays arriving at or
	reflector or support structure may produce aperture blockage for a reflector enterna.
1	i chector, or support su actare may produce apertare processes for a reficelor allerina.

EC8701	-Antennas and Microwave Engineering Department of ECE 2022-2023
26.	Discuss the merits and applications of offset feed reflector antenna.(NOV/DEC 2021)
	• Offset feed arrangement, reduce aperture block which reduces the antenna gain.
	• It is used as domestic satellite TV receiving antenna
	UNIT-II / PART-B
1.	Derive the expression for the field quantities radiated from a $\lambda/2$ dipole and prove that the
	radiation resistance to be 73 Ohms.
2.	(i) Compare uniform and tapered aperture antennas. Give examples.
	(ii)With neat diagrams, explain parabolic reflector antenna and its Cassegrain feeding system.
3.	Discuss the principle working of Parabolic reflectors. Explain the various feed techniques their
	relative merits and demerits. Discuss the role of f/d ratio in the parabolic reflectors (f- focal length,
	D – diameter of reflector). (May 2019)
4.	(i) Explain the radiation mechanism of Microstrip antenna.
	(ii) Write short notes on Slot antenna. (Nov 2019) (Nov 17)
5.	Design a 50 to 200 MHz log periodic dipole antenna for gain corresponds to scale factor 0.8 and
	space factor 0.15. Assume the gap spacing at the smallest dipole is 3.6 mm. (May 18)
6.	Explain in detail about log periodic antennas. What is the need for feeding from end with shorter
	dipoles and the need for transposing the lines? Also discuss the effects of decreasing α . (Nov/Dec
	2016)
7.	Design a Log-Periodic dipole array with 7 dBi gain and a 4 to 1 bandwidth. Specify apex angle α ,
	scale constant k and the number of elements. (Nov/Dec 2015)
8.	Explain the design procedure for the construction of log periodic antenna. (May 2016)
9.	Explain the principle of operation of Log periodic antenna with neat schematic diagram. (Nov/Dec
	2016) (May 2019)
10.	Discuss in detail how a spiral antenna behaves as a frequency independent antenna. (May 2014)
11.	(i) What is Log periodic antenna? Explain the principle of Log periodic antenna.
	(ii) Design a $50 - 200$ MHz log – periodic antenna to obtain a gain corresponds to scale factor 0.8 and space factor 0.15 (New 2010)
12	Explain in detail the radiation from a slot antenna and their feed systems. (Nov/Dec 2016)
13	(i) Explain the principle of parabolic reflector antenna and discuss on different types of feed used
15.	with neat diagram
	(ii) The diameter of a parabolic reflector is 2m. For operation at 6GHz, find the beam width
	between first nulls and the gain. (Nov 17)
14.	Explain the principles of operation of Horn antenna and discuss the various forms of Horn
	antenna. Obtain the design equations of Horn antenna. (May 18) (May 2019)
15.	Explain the radiation mechanism of a microstrip antenna with suitable illustrations. With suitable
	figures explain the various feed techniques. (May 18)
16.	Explain the principle of operation and applications of loop antenna.
17.	i) Explain in detail about Loop antenna. Derive the expression for fields at Far region.
	ii) Explain how a Loop antenna is utilized for determining the direction of an incoming radio
	signal. (Nov 2020)
18.	i) With neat necessary diagrams, explain parabolic reflector antenna and its different types of
	iecung system. ii) Briefly explain about frequency independent planar I og spiral antenna (Nov 2020)
19	Discuss the parabola geometry that makes it suitable for antenna reflectors. Develop an antenna
	employing a parabolic reflector that is likely to be a highly directive receiving
	antenna.(NOV/DEC 2021)
20.	Illustrate the radiation characteristics of microstrip antenna with different types of feeding
	structures and mention its applications.(NOV/DEC 2021)

21. Explain in detail about Loop antenna. Derive the expression for fields at Far region.(NOV/DEC 2021)

UNIT III ANTENNA ARRAYS AND APPLICATIONS

Two-element array, Array factor, Pattern multiplication, uniformly spaced arrays with uniform and non-uniform excitation amplitudes, Smart antennas.

	UNIT-III / PART-A
1.	What is an antenna array?
	• Antenna array is system of a similar antennas oriented similarly to get greater directivity
	in a desired direction.
	• Antenna array is a radiating system consisting of several spaced and properly phased
-	(current phase) radiators.
2.	What is a Linear Array?
	An antenna array is said to be linear if the individual antennas of the array are equally spaced
2	along a straight line.
3.	Define uniform linear array.
	Uniform linear array is defined as the one in which the elements are fed with a current of
	equal amplitude (magnitude) with uniform progressive phase shift along the line. The individual
4	Why we go for non-uniform amplitude distribution?
4.	Why we go for non-uniform amplitude distribution: We go for non-uniform amplitude distribution to reduce side lobe levels
5	Distinguish between uniform and non-uniform arrays
5.	• Uniform linear array is one in which the elements are fed with a current of equal
	amplitude
	 Non-uniform linear array is one in which the elements are fed with currents of un equal
	amplitude
6	What is uniform Array?
	An array of identical elements all of identical magnitude and each with a progressive phase
	is referred to as a uniform array.
	In other words, Uniform Array is an Array in which the array elements are fed with a
	current of equal amplitude (magnitude) with uniform progressive phase shift along the line.
7.	What are the factors that decide the radiation characteristics of array?
	In an array of identical elements, there are at least five controls that can be used to shape the
	overall pattern of the antenna.
	These are:
	1. the geometrical configuration of the overall array (linear, circular, rectangular, spherical, etc.)
	2. the relative displacement between the elements
	3. the excitation amplitude of the individual elements
	4. the excitation phase of the individual elements
	5. the relative pattern of the individual elements
0	
δ.	Define Grating lobes
	Lobes with maxima in other directions, in addition to the main maximum is referred to as Grating
0	100cs. What is and fire array?
7.	Find-fire array is defined as an array in which the principal radiation direction is along the
	array axis i.e. maximum radiation is along the axis of the array
10	Give the condition to have only one end-fire maximum
10.	To have only one end-fire maximum and to avoid any grating lobes, the maximum spacing
	between the elements should be less than half the wave length, i.e. $d_{max} < \lambda/2$.

11.	What is broad-side array?
	Broadside array is defined as an array in which the principal radiation direction is perpendicular to
	the array axis.
12.	A uniform linear array contains 50 isotropic radiators with an inter element spacing of $\lambda/2$.
	Find the directivity of broadside forms of arrays. (May 2013)
	N=50 d= $\lambda/2$
	Array length=N d= $l = 25\lambda$
	Directivity of Broadside array $= 2$ $= 50$
13.	What is tapering of arrays? (May 2019)
	The techniques used in reduction of side lobe level are called as tapering. It is found that minor
	lobes are reduced if the center source radiates more strongly than the end sources (non-uniform
	current distribution). Hence tapering is done from center to end according to some prescription.
14.	What are the advantages of antenna arrays? (May 2014)
	The advantages of antenna arrays are:
	(i) It offers high directivity. Also, the directivity can be varied by choosing a proper number
	of elements according to the need.
	(ii) The strength of the transmitted signal significantly increased.
	(iii)It offers beam steering electronically. Thus, the direction of the beam can be changed from
	one point to another.
	(iv)It provides a better signal to noise ratio.
	(v) With the application of non-uniform input to each element, the radiation pattern can be
	shaped according to the requirement.
	(vi) The design of the antenna array supports better antenna performance.
15.	Draw the radiation pattern for a linear array of two isotropic elements spaced $\lambda/2$ apart and
	with equal current fed in phase. (April/May 2017) (May 2019)
	MAX.
	1 0
	min I $\theta \stackrel{2}{=} 0$ min
	MAX
	(b). Field pattern of Fig. i.e. same amplitude
	and phase with $d = \lambda/2$.
	Normalized total field of two element array of isotropic point sources of same amplitude and same
	phase that are $\lambda/2$ apart is
	$\left(\frac{2\pi}{2\pi}\times\frac{\lambda}{\lambda}\cos\theta\right)$
	$\lambda^2 (\underline{\pi})$
	$E_{nor} = \cos\left \frac{1}{2}\right = \cos\left \frac{1}{2}\cos\theta\right $
1	

EC8701	-Antennas and Microwave Engineering	Department of ECE	2022-2023
23.	What is the main advantage of Bin	omial array?	
	Binomial arrays usually possess the	smallest side lobes when com	pared to Dolph-Tschebyscheff
	and uniform arrays. Binomial array	s with element spacing equal	or less than $\lambda/2$ have no side
	lobes. The main advantage of Bind	omial array is the absence or	no side lobes in the radiation
	pattern of Binomial array when the e	lement spacing is equal to or le	ess than $\lambda/2$.
24.	What is binomial array?		
	Binomial array is an array w	hose elements are excited acco	rding to the current distribution
	determined by the coefficients of Bir	nomial series.	
	Binomial series:		
	$(1+x)^{m-1} = 1 + (m-1)x + \frac{(m-1)(m-1)}{m-1}$	$\frac{2}{x^2} + \frac{(m-1)(m-2)(m-3)}{x^3} x^3$	+
	2!	3!	
	EC8701 23. 24.	EC8701-Antennas and Microwave Engineering23.What is the main advantage of Bin Binomial arrays usually possess the and uniform arrays. Binomial array lobes. The main advantage of Bino pattern of Binomial array when the e24.What is binomial array Binomial array is an array when determined by the coefficients of Bin 	EC8701-Antennas and Microwave EngineeringDepartment of ECE23.What is the main advantage of Binomial array? Binomial arrays usually possess the smallest side lobes when com and uniform arrays. Binomial arrays with element spacing equal lobes. The main advantage of Binomial array is the absence or pattern of Binomial array when the element spacing is equal to or led 24.24.What is binomial array? Binomial array is an array whose elements are excited accord determined by the coefficients of Binomial series. Binomial series: $(1+x)^{m-1} = 1 + (m-1)x + \frac{(m-1)(m-2)}{2!}x^2 + \frac{(m-1)(m-2)(m-3)}{3!}x^3$

For example, For m = 3

$(1+x)^{3-1} = 1 + (3-1)x + \frac{(3-1)(3-2)}{2!}x^2 + \frac{(3-1)(3-2)(3-3)}{3!}x^3 + \dots$

$$= 1 + 2x + x^2$$

Current distribution for 3 element binomial array is 1:2:1

25. What are the advantages of Dolph-Tschebyscheff array? The advantages of Dolph-Tschebyscheff array are

- It provides a minimum beam width for a specified side lobe level.
- It provides pattern which contains side lobes of equal level.
- The amplitude distribution is not highly tapered and hence it is more practical.

26. What is Phased arrays ? (APR/MAY 18)

- In antenna theory, a **phased array** usually means an **electronically scanned array**; a computer-controlled array of antennas which creates a beam of radio waves which can be electronically steered to point in different directions, without moving the antennas.
- In an array antenna, the radio frequency current from the transmitter is fed to the individual antennas with the correct phase relationship so that the radio waves from the separate antennas add together to increase the radiation in a desired direction, while cancelling to suppress radiation in undesired directions.
- In a phased array, the power from the transmitter is fed to the antennas through devices called *phase shifters*, controlled by a computer system, which can alter the phase electronically, thus steering the beam of radio waves to a different direction.

27. Define adaptive array(smart antennas). /

Illustrate the features of smart antennas.(NOV/DEC 2021)

- Adaptive arrays are antenna array that can steer the beam to any direction of interest while simultaneously nulling interfering signals.
- Smart antennas (also known as adaptive array antennas, digital antenna arrays) are antenna arrays with smart signal processing algorithms used to identify spatial signal signatures such as the direction of arrival (DOA) of the signal, and use them to calculate beamforming vectors which are used to track and locate the antenna beam on the mobile/target.
- Smart antenna techniques are used notably in acoustic signal processing, track and scan radar, radio astronomy and radio telescopes, and mostly in cellular systems like W-CDMA, UMTS, and LTE.
- Smart antennas have many functions: DOA(Direction of Arrival) estimation, beamforming, interference nulling, and constant modulus preservation.

28. What is reconfigurable antenna ?(Nov 20)

- A reconfigurable antenna is an antenna capable of modifying its frequency and radiation properties dynamically, in a controlled and reversible manner.
- **Reconfigurable** antennas can provide various functions in operating frequency, beam pattern, polarization, etc. The dynamic tuning can be achieved by manipulating a certain switching mechanism through controlling electronic, mechanical, physical or optical switches.

Department of ECE UNIT-III / PART-B

1.	(i) Write a note on binomial array?
	(ii) Draw the pattern of 10 element binomial array with spacing between the elements of $3\lambda/4$
	and $\lambda / 2$.
2.	Derive the expressions for field pattern of broad side array of n point sources.(May 2013)(Nov
	2019)
3.	Two identical radiators are spaced $d = 3\lambda/4$ meters apart and fed with currents of equal
	magnitude but with 180 ⁰ phase difference. Evaluate the resultant radiation and identify the
	direction of maximum & minimum radiation. (May 2015)
4.	For a 2 element linear antenna array separated by a distance $d = 3\lambda/4$, derive the field quantities
	and draw its radiation pattern for the phase difference of 45° . (Dec 2012)
5.	Derive the expressions for field pattern of end-fire array of n sources of equal amplitude and
	spacing. (May 2012)
6.	An antenna array consists of two identical isotropic radiators spaced by a distance of $d = \lambda / 4$
	meters and fed with currents of equal magnitude but with a phase difference $\boldsymbol{\beta}$. Evaluate the
	resultant radiation for $\beta = 0^0$ and thereby identify the direction of maximum radiation. (Dec
	2011)
7.	Describe a broadside array. Deduce an expression for the radiation pattern of a broadside array
	with two point sources.
8.	Plot the radiation pattern of a linear array of 4 isotropic elements spaced $\lambda/2$ apart and fed out of
	phase with equal currents.
9.	(i) Derive Array factor of an Uniform linear array of n sources. Explain the significance of
	array factor. (Dec 2013)
10	(II) Compare End fire and Broadside array. (May 2014)
10.	Explain in detail about: 1) adaptive arrays 2) Phased arrays.(Nov 2019)
11.	Obtain the expression for the field and the radiation pattern produced by a N element array of
	infinitesimal with distance of separation $\lambda/2$ and currents of unequal magnitude and phase shift
10	180 degree. (May 2016)
12.	(1) Using pattern multiplication determine the radiation pattern for 8 element array separated by the distance $\lambda/2$
	(ii) Write short notes on tapered array and phased array. (May 2016)
13	Develop a treatise on the following forms of arrays: (Nov/Dec 2015)
10.	(i)Linear array (ii)Two-element array (iii)Uniform array (iv)Binomial array
14.	Derive and draw the radiation pattern of 4 isotropic sources of equal amplitude and same phase.
	(April/May 2017)
15.	(i) Describe the principle of phased arrays and explain how it is used in beam forming.
	(April/May 2017)(Nov/Dec 2016)
	(ii) Write short notes on binomial arrays. (April/May 2017)(Nov/Dec 2016)
16.	Derive the expression for the array factor of a linear array of four isotropic element spaced $\lambda/2$
	apart fed with signals of equal amplitude and phase. Obtain the directions of maxima and
	minima.(Nov17)
17.	(i) Explain in detail the Binomial array and derive the expression for the array factor. Also obtain
	the excitation coefficients of a seven element binomial array.
	(ii)What is phased array?(Nov 17)
18.	Derive the expression for the array factor of a linear array of four isotropic element spaced $\lambda/2$
	apart fed with signals of equal amplitude and phase. Obtain the directions of maxima and minima.
	(May 18)

EC8701-Antennas	and M	Microwave	Enginee	ring	Department	t of ECE
	00000 10	11010110110	Birginee		Depentition	0,202

19.	Design a broadside Dolph-Tschebyscheff array of 10 elements with spacing'd' between the
	elements and with a major-to-minor lobe ratio of 26 dB. Find the excitation coefficients and form
	the array factor. (May 18)
20.	i) What is broad side array ? Deduce the expression for the Radiation pattern of a broadside
	array with n- vertical dipoles. (2)
21	II) Design a 4 element broadside array of $\lambda/2$ spacing between elements. (Nov 20)
21.	1) what is non-uniform excitation amplitudes ? Draw the pattern of 10 elements binomial array with spacing's between the elements of $\lambda/2$
	ii) Write short notes about Active antenna.(Nov 20)
22.	i) A broad casting station (500 to 1000 KHz band) requires a pattern in the horizontal plane
	fulfilling the conditions as given below. The max. field intensity with as little variation as
	possible, is to be radiated in the 90° sector between NE and WE. No nulls in the pattern can occur
	in this sector. The nulls must be present in the due east and due SW directions in order to prevent
	interference with other stations in these directions.
22	II) what is the need of smart antennas ? Briefly explain about Adaptive arrays. (Nov 20)
23.	(NOV/DEC 2021)
- 24	(NOV/DEC 2021)
24.	Describe in detail about smart antennas and its applications. (NOV/DEC 2021)
25.	A uniform linear array consists of 16 isotropic point sources with a spacing of $\lambda/4$. If the phase
	difference is -90°. Determine the directivity, HPBW, beam solid angle and effective
	apertures.(NOV/DEC 2021)
M	UNIT IV PASSIVE AND ACTIVE MICROWAVE DEVICES
NIICro Dring	bwave Passive components: Directional Coupler, Power Divider, Magic Tee, attenuator, resonator,
diode	s PIN diodes Microwave tubes: Klystron TWT Magnetron
uioue	s, The diodes, Microwave tubes. Rigstion, Twit, Magnetion.
	UNIT-IV / PART-A
1.	UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of
1.	UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of directional couplers.
1.	UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of directional couplers. The two performance factors of DC are the Coupling Factor and Directivity. Coupling Factor
1.	UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of directional couplers. The two performance factors of DC are the Coupling Factor and Directivity. Coupling Factor defines the ratio of the amount of power coupled in coupled port to that of power at input port in
1.	UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of directional couplers. The two performance factors of DC are the Coupling Factor and Directivity. Coupling Factor defines the ratio of the amount of power coupled in coupled port to that of power at input port in decibels. Directivity is defined as the ratio of powers at the isolated port and the incident ports at
1.	UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of directional couplers. The two performance factors of DC are the Coupling Factor and Directivity. Coupling Factor defines the ratio of the amount of power coupled in coupled port to that of power at input port in decibels. Directivity is defined as the ratio of powers at the isolated port and the incident ports at decibels. Types: Bethe hole DC 2 hole crossed guide DC coupled line couplers, branch line couplers, and
1.	UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of directional couplers. The two performance factors of DC are the Coupling Factor and Directivity. Coupling Factor defines the ratio of the amount of power coupled in coupled port to that of power at input port in decibels. Directivity is defined as the ratio of powers at the isolated port and the incident ports at decibels. Types: Bethe hole DC, 2 hole, crossed guide DC, coupled line couplers, branch line couplers, and Lange DC are the different types of directional couplers
1.	UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of directional couplers. The two performance factors of DC are the Coupling Factor and Directivity. Coupling Factor defines the ratio of the amount of power coupled in coupled port to that of power at input port in decibels. Directivity is defined as the ratio of powers at the isolated port and the incident ports at decibels. Types: Bethe hole DC, 2 hole, crossed guide DC, coupled line couplers, branch line couplers, and Lange DC are the different types of directional couplers.
1.	UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of directional couplers. The two performance factors of DC are the Coupling Factor and Directivity. Coupling Factor defines the ratio of the amount of power coupled in coupled port to that of power at input port in decibels. Directivity is defined as the ratio of powers at the isolated port and the incident ports at decibels. Types: Bethe hole DC, 2 hole, crossed guide DC, coupled line couplers, branch line couplers, and Lange DC are the different types of directional couplers. Name some uses of waveguide Tees. What are the two different types of waveguide Tees?
1. 2.	UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of directional couplers. The two performance factors of DC are the Coupling Factor and Directivity. Coupling Factor defines the ratio of the amount of power coupled in coupled port to that of power at input port in decibels. Directivity is defined as the ratio of powers at the isolated port and the incident ports at decibels. Types: Bethe hole DC, 2 hole, crossed guide DC, coupled line couplers, branch line couplers, and Lange DC are the different types of directional couplers. Name some uses of waveguide Tees. What are the two different types of waveguide Tees? It is used to connect a branch or section of the waveguide in series or parallel with the main
1.	UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of directional couplers. The two performance factors of DC are the Coupling Factor and Directivity. Coupling Factor defines the ratio of the amount of power coupled in coupled port to that of power at input port in decibels. Directivity is defined as the ratio of powers at the isolated port and the incident ports at decibels. Types: Bethe hole DC, 2 hole, crossed guide DC, coupled line couplers, branch line couplers, and Lange DC are the different types of directional couplers. Name some uses of waveguide Tees. What are the two different types of waveguide Tees? It is used to connect a branch or section of the waveguide in series or parallel with the main waveguide transmission line for providing means of splitting and also of combining power in a
1. 2.	UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of directional couplers. The two performance factors of DC are the Coupling Factor and Directivity. Coupling Factor defines the ratio of the amount of power coupled in coupled port to that of power at input port in decibels. Directivity is defined as the ratio of powers at the isolated port and the incident ports at decibels. Types: Bethe hole DC, 2 hole, crossed guide DC, coupled line couplers, branch line couplers, and Lange DC are the different types of directional couplers. Name some uses of waveguide Tees. What are the two different types of waveguide Tees? It is used to connect a branch or section of the waveguide in series or parallel with the main waveguide transmission line for providing means of splitting and also of combining power in a waveguide system. Truncet (i) E plane tee (ceries) and (ii) H plane tee (shurt)
1. 2.	UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of directional couplers. The two performance factors of DC are the Coupling Factor and Directivity. Coupling Factor defines the ratio of the amount of power coupled in coupled port to that of power at input port in decibels. Directivity is defined as the ratio of powers at the isolated port and the incident ports at decibels. Types: Bethe hole DC, 2 hole, crossed guide DC, coupled line couplers, branch line couplers, and Lange DC are the different types of directional couplers. Name some uses of waveguide Tees. What are the two different types of waveguide Tees? It is used to connect a branch or section of the waveguide in series or parallel with the main waveguide transmission line for providing means of splitting and also of combining power in a waveguide system. Types: (i) E-plane tee (series) and (ii) H-plane tee (shunt). Write the application of mergin Tee (New 2012 & Mey 2017)
1. 2. 3.	UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of directional couplers. The two performance factors of DC are the Coupling Factor and Directivity. Coupling Factor defines the ratio of the amount of power coupled in coupled port to that of power at input port in decibels. Directivity is defined as the ratio of powers at the isolated port and the incident ports at decibels. Types: Bethe hole DC, 2 hole, crossed guide DC, coupled line couplers, branch line couplers, and Lange DC are the different types of directional couplers. Name some uses of waveguide Tees. What are the two different types of waveguide Tees? It is used to connect a branch or section of the waveguide in series or parallel with the main waveguide transmission line for providing means of splitting and also of combining power in a waveguide system. Types: (i) E-plane tee (series) and (ii) H-plane tee (shunt). Write the application of magic Tee. (Nov 2012 & May 2017) Measurement of impedance. (ii) As duplexer (iii) As mixer and (iy) As an isolator.
1. 2. 3. 4.	UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of directional couplers. The two performance factors of DC are the Coupling Factor and Directivity. Coupling Factor defines the ratio of the amount of power coupled in coupled port to that of power at input port in decibels. Directivity is defined as the ratio of powers at the isolated port and the incident ports at decibels. Types: Bethe hole DC, 2 hole, crossed guide DC, coupled line couplers, branch line couplers, and Lange DC are the different types of directional couplers. Name some uses of waveguide Tees. What are the two different types of waveguide Tees? It is used to connect a branch or section of the waveguide in series or parallel with the main waveguide transmission line for providing means of splitting and also of combining power in a waveguide system. Types: (i) E-plane tee (series) and (ii) H-plane tee (shunt). Write the application of magic Tee. (Nov 2012 & May 2017) Measurement of impedance, (ii) As duplexer (iii) As mixer and (iv) As an isolator.
1. 2. 3. 4.	UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of directional couplers. The two performance factors of DC are the Coupling Factor and Directivity. Coupling Factor defines the ratio of the amount of power coupled in coupled port to that of power at input port in decibels. Directivity is defined as the ratio of powers at the isolated port and the incident ports at decibels. Types: Bethe hole DC, 2 hole, crossed guide DC, coupled line couplers, branch line couplers, and Lange DC are the different types of directional couplers. Name some uses of waveguide Tees. What are the two different types of waveguide Tees? It is used to connect a branch or section of the waveguide in series or parallel with the main waveguide transmission line for providing means of splitting and also of combining power in a waveguide system. Types: (i) E-plane tee (series) and (ii) H-plane tee (shunt). Write the application of magic Tee. (Nov 2012 & May 2017) Measurement of impedance, (ii) As duplexer (iii) As mixer and (iv) As an isolator. What is hybrid ring or Rat-Race junctions? (May 2013) The hybrid ring is a four-port junction .The four ports are connected in the form of an angular ring
1. 2. 3. 4.	 UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of directional couplers. The two performance factors of DC are the Coupling Factor and Directivity. Coupling Factor defines the ratio of the amount of power coupled in coupled port to that of power at input port in decibels. Directivity is defined as the ratio of powers at the isolated port and the incident ports at decibels. Types: Bethe hole DC, 2 hole, crossed guide DC, coupled line couplers, branch line couplers, and Lange DC are the different types of directional couplers. Name some uses of waveguide Tees. What are the two different types of waveguide Tees? It is used to connect a branch or section of the waveguide in series or parallel with the main waveguide transmission line for providing means of splitting and also of combining power in a waveguide system. Types: (i) E-plane tee (series) and (ii) H-plane tee (shunt). Write the application of magic Tee. (Nov 2012 & May 2017) Measurement of impedance, (ii) As duplexer (iii) As mixer and (iv) As an isolator. What is hybrid ring or Rat-Race junctions? (May 2013) The hybrid ring is a four-port junction .The four ports are connected in the form of an angular ring at proper intervals by means of series (or parallel) junction. It also called Rat-race circuits. It is
1. 2. 3. 4.	UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of directional couplers. The two performance factors of DC are the Coupling Factor and Directivity. Coupling Factor defines the ratio of the amount of power coupled in coupled port to that of power at input port in decibels. Directivity is defined as the ratio of powers at the isolated port and the incident ports at decibels. Types: Bethe hole DC, 2 hole, crossed guide DC, coupled line couplers, branch line couplers, and Lange DC are the different types of directional couplers. Name some uses of waveguide Tees. What are the two different types of waveguide Tees? It is used to connect a branch or section of the waveguide in series or parallel with the main waveguide transmission line for providing means of splitting and also of combining power in a waveguide system. Types: (i) E-plane tee (series) and (ii) H-plane tee (shunt). Write the application of magic Tee. (Nov 2012 & May 2017) Measurement of impedance, (ii) As duplexer (iii) As mixer and (iv) As an isolator. What is hybrid ring or Rat-Race junctions? (May 2013) The hybrid ring is a four-port junction .The four ports are connected in the form of an angular ring at proper intervals by means of series (or parallel) junction. It also called Rat-race circuits. It is mainly used to combining two signals (or) dividing a single signal into two equal halves.
1. 2. 3. 4.	UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of directional couplers. The two performance factors of DC are the Coupling Factor and Directivity. Coupling Factor defines the ratio of the amount of power coupled in coupled port to that of power at input port in decibels. Directivity is defined as the ratio of powers at the isolated port and the incident ports at decibels. Types: Bethe hole DC, 2 hole, crossed guide DC, coupled line couplers, branch line couplers, and Lange DC are the different types of directional couplers. Name some uses of waveguide Tees. What are the two different types of waveguide Tees? It is used to connect a branch or section of the waveguide in series or parallel with the main waveguide transmission line for providing means of splitting and also of combining power in a waveguide system. Types: (i) E-plane tee (series) and (ii) H-plane tee (shunt). Write the application of magic Tee. (Nov 2012 & May 2017) Measurement of impedance, (ii) As duplexer (iii) As mixer and (iv) As an isolator. What is hybrid ring or Rat-Race junctions? (May 2013) The hybrid ring is a four-port junction. The four ports are connected in the form of an angular ring at proper intervals by means of series (or parallel) junction. It also called Rat-race circuits. It is mainly used to combining two signals (or) dividing a single signal into two equal halves.
1. 2. 3. 4. 5.	 UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of directional couplers. The two performance factors of DC are the Coupling Factor and Directivity. Coupling Factor defines the ratio of the amount of power coupled in coupled port to that of power at input port in decibels. Directivity is defined as the ratio of powers at the isolated port and the incident ports at decibels. Types: Bethe hole DC, 2 hole, crossed guide DC, coupled line couplers, branch line couplers, and Lange DC are the different types of directional couplers. Name some uses of waveguide Tees. What are the two different types of waveguide Tees? It is used to connect a branch or section of the waveguide in series or parallel with the main waveguide transmission line for providing means of splitting and also of combining power in a waveguide system. Types: (i) E-plane tee (series) and (ii) H-plane tee (shunt). Write the application of magic Tee. (Nov 2012 & May 2017) Measurement of impedance, (ii) As duplexer (iii) As mixer and (iv) As an isolator. What is hybrid ring or Rat-Race junctions? (May 2013) The hybrid ring is a four-port junction .The four ports are connected in the form of an angular ring at proper intervals by means of series (or parallel) junction. It also called Rat-race circuits. It is mainly used to combining two signals (or) dividing a single signal into two equal halves. What is negative resistance in Gunn diode? (May 2014)(Nov 2019) The carrier drift valority is linearly increased from zero to a maximum when the alactric field in
1. 2. 3. 4. 5.	UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of directional couplers. The two performance factors of DC are the Coupling Factor and Directivity. Coupling Factor defines the ratio of the amount of power coupled in coupled port to that of power at input port in decibels. Directivity is defined as the ratio of powers at the isolated port and the incident ports at decibels. Types: Bethe hole DC, 2 hole, crossed guide DC, coupled line couplers, branch line couplers, and Lange DC are the different types of directional couplers. Name some uses of waveguide Tees. What are the two different types of waveguide Tees? It is used to connect a branch or section of the waveguide in series or parallel with the main waveguide system. Types: (i) E-plane tee (series) and (ii) H-plane tee (shunt). Write the application of magic Tee. (Nov 2012 & May 2017) Measurement of impedance, (ii) As duplexer (iii) As mixer and (iv) As an isolator. What is hybrid ring or Rat-Race junctions? (May 2013) The hybrid ring is a four-port junction .The four ports are connected in the form of an angular ring at proper intervals by means of series (or parallel) junction. It also called Rat-race circuits. It is mainly used to combining two signals (or) dividing a single signal into two equal halves. What is negative resistance in Gunn diode? (May 2014)(Nov 2019) The carrier drift velocity is linearly increased from zero to a maximum when the electric field is varied from zero to a threshold value. When the electric field is beyond the threshold value of
1. 2. 3. 4. 5.	UNIT-IV / PART-A Define any two performance factors of directional couplers. List out the different types of directional couplers. The two performance factors of DC are the Coupling Factor and Directivity. Coupling Factor defines the ratio of the amount of power coupled in coupled port to that of power at input port in decibels. Directivity is defined as the ratio of powers at the isolated port and the incident ports at decibels. Types: Bethe hole DC, 2 hole, crossed guide DC, coupled line couplers, branch line couplers, and Lange DC are the different types of directional couplers. Name some uses of waveguide Tees. What are the two different types of waveguide Tees? It is used to connect a branch or section of the waveguide in series or parallel with the main waveguide system. Types: (i) E-plane tee (series) and (ii) H-plane tee (shunt). Write the application of magic Tee. (Nov 2012 & May 2017) Measurement of impedance, (ii) As duplexer (iii) As mixer and (iv) As an isolator. What is hybrid ring or Rat-Race junctions? (May 2013) The hybrid ring is a four-port junction. The four ports are connected in the form of an angular ring at proper intervals by means of series (or parallel) junction. It also called Rat-race circuits. It is mainly used to combining two signals (or) dividing a single signal into two equal halves. What is negative resistance in Gunn diode? (May 2014)(Nov 2019) The carrier drift velocity is linearly increased from zero to a maximum when the electric field is varied from zero to a threshold value. When the electric field is beyond the threshold value of 3000/cm, the drift velocity is decreased and the diode exhibits negative resistance. The diode in

EC8701	-Antennas and	Microwave Engineering Department of I	ECE 2022-2023
6.	A Direction	al coupler is having coupling factor	of 20dB and directivity of 40dB. If the
	incident pov	ver is 900mW, what is the coupled pow	er? (May 2013)
	Coupling Fac	ctor (C) in dB = $10 \log_{10} (P_1/P_3) = 20$	
	Power suppli	ed to port 1 is coupled to port 3 (the <i>coup</i>	oled port)
	11	$P_1/P_3 = 100$; $P_1 = 900 \text{ mW}$; $P_3 = 100$	$P_1 / 100 = 9 \text{ mW}$
	Coupled pow	ver = 9 mW	
7	What are th	e various materials used for Gunn dio	les? What are the four different modes of
<i>,</i> .	operation of	GUNN diode?	
	GaAs. InP. (CdTe. InAs are materials used in Gunn d	iode. Gunn oscillation mode. stable
	amplification	mode LSA oscillation and bias current	oscillation mode
8	Mention the	applications of IMPATT diode.	
0.	Microwave 9	enerators. Receiver local oscillators, para	metric amplifier
9	What is Gur	n Effect? (May 2013) (Nov 2014)	
7.	Above some	critical voltage corresponding to an ele	ctric field of 2000-4000 v/cm the current in
	every specir	nen became a fluctuating function of	time The frequency of oscillation was
	determined n	nainly by the specimen and not by the ex	ternal circuit. The length of the specimen is
	inversely pro	portional to the frequency of oscillation	Some of materials like GaAs InP CdTe
	exhibit a neg	ative differential mobility when biased at	ove a threshold value of the electric field
10	Compare PI	N and PN diode. (Nov 2016)	to ve a uneshola value of the electric field.
10.	S.No	PIN Diode	PN Diode
	1	A PIN diode is a diode with a wide	P-N junction diode is the most
	1.	undoped intrinsic semiconductor	fundamental and the simplest
		region between a p-type & an p-type	electronics device
		semiconductor region	cicculonies device.
	2	The p-type and p-type regions are	When one side of an intrinsic
	2.	typically heavily doned because they	semiconductor is doned with acceptor
		are used for obmic contacts	i e one side is made p-type by doping
		are used for online contacts.	with n-type material: a n-n junction
			diode is formed. This is a two terminal
			device
11	Draw the eq	uivalent circuit of a Gunn diode	device.
11.	The equivale	nt circuit of Gunn diode	
	The equivale		
			_ >
		1	R,
			ſ
			. ૬
		G市	5
			G〒 ≥- ⁿ
		0	
	$C_{j,}R_{j}$ – Diode	e capacitance, Diode resistance	
	R _s - total resis	stance of lead ohmic contacts, bulk resista	ince
	$C_p, L_p - packs$	age capacitance and inductance	
12.	List out the	different types of Magnetrons.	
	Negative Res	sistance magnetrons, Cyclotron frequency	magnetron, Travelling wave magnetron
13.	Explain Hul	l Cut-off condition.	
	Hull cut-off	condition gives the cut-off magnetic field	in a magnetron such that the electron grazes
	the anode and	d returns back to the cathode.	
14.	What is the	purpose of slow wave structures in TW	T? Name them. (May 2018)
	Slow wave s	tructures are used to reduce the phase vel	ocity of the wave in certain direction so that
	the electron l	beam and signal wave can interact. Helic	al, Feedback line, Zig-Zag, Interdigital line.
	corrugated w	ave guide.	

15.	List the advantages of Reflex klystron over multi-cavity klystrons.				
	Reflex klystrons can be used as an oscillator without any complex feedback circuitry as required				
	in multi-cavity klystrons. As it is a narrow bandwidth device it can be tuned to operate at a single				
	desired frequency in resonant circuits.				
16.	Explain the need for attenuators in TWT.				
	Attenuators are used to attenuate the unwanted signal traveling towards the input end due to				
	reflections arising from impedance mismatch.				
17.	What is meant by velocity modulation? (May	2018)			
	The change in the velocity of the electrons under	r the influence of an alternating field is termed as			
	velocity modulation				
18.	Define transit time in a Reflex klystron.				
	The time taken by electron to travel into the r	peller space and come back toward the cavity is			
	called the transit time in Reflex klystron.				
19.	Bring out the differences between the TWT &	: Klystron (May 2015 & 2017)			
	TWT	Klystron			
	High BW	Narrow BW			
	More gain	Less gain			
	Use non-resonant structures	Use cavity resonators			
	Continuous interaction between electron	Discontinuous interaction between electron			
	beam and RF voltage	beam and RF voltage			
20.	What do you meant by bunching?				
	The electrons traveling with different velocitie	s join together at their transit towards the output			
	end. This collection of different velocity modula	ted electrons is called bunching			
21.	Write the application of Reflex klystron				
	Local oscillator in microwave receiver (ii) M	icrowave signal source (iii) pump oscillator for			
	parametric amplifier (iv) as an oscillator, in freq	ency modulation of low power microwave link.			
22.	What are the classifications of Microwave tul	es and explain the difference between them.			
	Linear beam tubes (O -type)Cross field tubes (M- type)				
1	Linear beam tubes (O -type)	Cross field tubes (M- type)			
	In O-Type tube , a magnetic field whose ax	s In M-Type tube, electric field is in the			
	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used	s In M-Type tube, electric field is in the radial direction & magnetic field is in the			
	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng	s In M-Type tube, electric field is in the radial direction & magnetic field is in the h axial direction.			
	In O-Type tube, a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tube	s In M-Type tube, electric field is in the radial direction & magnetic field is in the axial direction.			
	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tube	s In M-Type tube, electric field is in the radial direction & magnetic field is in the axial direction.			
	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tubeReflex Klystron, TWT are Linear beam tubes	s In M-Type tube, electric field is in the radial direction & magnetic field is in the axial direction. Magnetron is M-type beam tubes			
	In O-Type tube, a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tube Reflex Klystron, TWT are Linear beam tubes	s In M-Type tube, electric field is in the radial direction & magnetic field is in the axial direction. Magnetron is M-type beam tubes			
	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tube Reflex Klystron, TWT are Linear beam tubes Low power device	s In M-Type tube, electric field is in the radial direction & magnetic field is in the axial direction. Magnetron is M-type beam tubes Low power device			
23.	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tube Reflex Klystron, TWT are Linear beam tubes Low power device Write the application of backward wave oscil	s In M-Type tube, electric field is in the radial direction & magnetic field is in the axial direction. Magnetron is M-type beam tubes Low power device ator.			
23.	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tube Reflex Klystron, TWT are Linear beam tubes Low power device Write the application of backward wave oscil (1) Signal source sources in instrument and trans	s In M-Type tube, electric field is in the radial direction & magnetic field is in the axial direction. Magnetron is M-type beam tubes Low power device ator. mitters.			
23.	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tube Reflex Klystron, TWT are Linear beam tubes Low power device Write the application of backward wave oscil (1) Signal source sources in instrument and trans (2) Broad band noise source	s In M-Type tube, electric field is in the o radial direction & magnetic field is in the axial direction. Magnetron is M-type beam tubes Low power device ator. mitters.			
23.	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tube Reflex Klystron, TWT are Linear beam tubes Low power device Write the application of backward wave oscil (1) Signal source sources in instrument and trans (2) Broad band noise source (3) Noise less oscillator with good bandwidth in	s In M-Type tube, electric field is in the radial direction & magnetic field is in the axial direction. Magnetron is M-type beam tubes Low power device ator. mitters.			
23.	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tube Reflex Klystron, TWT are Linear beam tubes Low power device Write the application of backward wave oscil (1) Signal source sources in instrument and trans (2) Broad band noise source (3) Noise less oscillator with good bandwidth in Define Electronic Admittance.	s In M-Type tube, electric field is in the o radial direction & magnetic field is in the axial direction. Magnetron is M-type beam tubes Low power device ator. mitters.			
23.	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tube Reflex Klystron, TWT are Linear beam tubes Low power device Write the application of backward wave oscil (1) Signal source sources in instrument and trans (2) Broad band noise source (3) Noise less oscillator with good bandwidth in Define Electronic Admittance. It is defined by the ratio of induced bunch beam	s In M-Type tube, electric field is in the o radial direction & magnetic field is in the axial direction. Magnetron is M-type beam tubes Low power device Aator. mitters. Erequency range 3-9 GHz.			
23. 24. 25.	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tube Reflex Klystron, TWT are Linear beam tubes Low power device Write the application of backward wave oscil (1) Signal source sources in instrument and trans (2) Broad band noise source (3) Noise less oscillator with good bandwidth in Define Electronic Admittance. It is defined by the ratio of induced bunch beam What is drift space?	s In M-Type tube, electric field is in the radial direction & magnetic field is in the axial direction. Magnetron is M-type beam tubes Low power device Ator. mitters. Frequency range 3-9 GHz.			
23. 24. 25.	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tube Reflex Klystron, TWT are Linear beam tubes Low power device Write the application of backward wave oscil (1) Signal source sources in instrument and trans (2) Broad band noise source (3) Noise less oscillator with good bandwidth in Define Electronic Admittance. It is defined by the ratio of induced bunch beam What is drift space? The separation between buncher and catcher gri	s In M-Type tube, electric field is in the radial direction & magnetic field is in the axial direction. Magnetron is M-type beam tubes Low power device ator. mitters. Frequency range 3-9 GHz.			
23. 24. 25. 26.	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tube Reflex Klystron, TWT are Linear beam tubes Low power device Write the application of backward wave oscil (1) Signal source sources in instrument and trans (2) Broad band noise source (3) Noise less oscillator with good bandwidth in Define Electronic Admittance. It is defined by the ratio of induced bunch beam What is drift space? The separation between buncher and catcher gri What is magnetron? (NOV 2016)	s In M-Type tube, electric field is in the radial direction & magnetic field is in the axial direction. Magnetron is M-type beam tubes Low power device Low power device ator. mitters. Frequency range 3-9 GHz.			
23. 24. 25. 26.	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tube Reflex Klystron, TWT are Linear beam tubes Low power device Write the application of backward wave oscil (1) Signal source sources in instrument and trans (2) Broad band noise source (3) Noise less oscillator with good bandwidth in Define Electronic Admittance. It is defined by the ratio of induced bunch beam What is drift space? The separation between buncher and catcher gri What is magnetron? (NOV 2016) Magnetron is an electron tube for amplifying or	s In M-Type tube, electric field is in the radial direction & magnetic field is in the axial direction. h axial direction. Magnetron is M-type beam tubes Low power device ator. mitters. Frequency range 3-9 GHz. current and cavity gap voltage. ls is called drift space. generating microwaves, with the flow of electrons			
23. 24. 25. 26.	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tube Reflex Klystron, TWT are Linear beam tubes Low power device Write the application of backward wave oscil (1) Signal source sources in instrument and trans (2) Broad band noise source (3) Noise less oscillator with good bandwidth in Define Electronic Admittance. It is defined by the ratio of induced bunch beam What is drift space? The separation between buncher and catcher gri What is magnetron? (NOV 2016) Magnetron is an electron tube for amplifying or controlled by an external magnetic field.	s In M-Type tube, electric field is in the radial direction & magnetic field is in the axial direction. Magnetron is M-type beam tubes Low power device Ator. mitters. Frequency range 3-9 GHz. current and cavity gap voltage. Is is called drift space. generating microwaves, with the flow of electrons			
23. 24. 25. 26. 27.	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tube Reflex Klystron, TWT are Linear beam tubes Low power device Write the application of backward wave oscil (1) Signal source sources in instrument and trans (2) Broad band noise source (3) Noise less oscillator with good bandwidth in Define Electronic Admittance. It is defined by the ratio of induced bunch beam What is drift space? The separation between buncher and catcher gri What is magnetron? (NOV 2016) Magnetron is an electron tube for amplifying or controlled by an external magnetic field.	s In M-Type tube, electric field is in the radial direction & magnetic field is in the axial direction. Magnetron is M-type beam tubes Low power device ator. mitters. Frequency range 3-9 GHz. current and cavity gap voltage. Is is called drift space. generating microwaves, with the flow of electrons me O type tubes.			
23. 24. 25. 26. 27.	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tubeReflex Klystron, TWT are Linear beam tubes Low power deviceWrite the application of backward wave oscil (1) Signal source sources in instrument and trans (2) Broad band noise source (3) Noise less oscillator with good bandwidth in Define Electronic Admittance. It is defined by the ratio of induced bunch beam What is drift space? The separation between buncher and catcher gri What is magnetron? (NOV 2016) Magnetron is an electron tube for amplifying or controlled by an external magnetic field.What do you mean by O type tube? Name source In O-type tube a magnetic field whose axis context	s In M-Type tube, electric field is in the radial direction & magnetic field is in the axial direction. Magnetron is M-type beam tubes Low power device ator. mitters. Frequency range 3-9 GHz. current and cavity gap voltage. Is is called drift space. generating microwaves, with the flow of electrons me O type tubes. ncides with the electron beam is used to hold the			
23. 24. 25. 26. 27.	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tube Reflex Klystron, TWT are Linear beam tubes Low power device Write the application of backward wave oscil (1) Signal source sources in instrument and trans (2) Broad band noise source (3) Noise less oscillator with good bandwidth in Define Electronic Admittance. It is defined by the ratio of induced bunch beam What is drift space? The separation between buncher and catcher gri What is magnetron? (NOV 2016) Magnetron is an electron tube for amplifying or controlled by an external magnetic field. What do you mean by O type tube? Name son In O-type tube a magnetic field whose axis co beam together as it travels the length of the tu	s In M-Type tube, electric field is in the radial direction & magnetic field is in the axial direction. Magnetron is M-type beam tubes Low power device ator. mitters. Frequency range 3-9 GHz. current and cavity gap voltage. ds is called drift space. generating microwaves, with the flow of electrons ne O type tubes. ncides with the electron beam is used to hold the be. It's also called as linear beam tube. TYPES -			
23. 24. 25. 26. 27.	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tube Reflex Klystron, TWT are Linear beam tubes Low power device Write the application of backward wave oscil (1) Signal source sources in instrument and trans (2) Broad band noise source (3) Noise less oscillator with good bandwidth in Define Electronic Admittance. It is defined by the ratio of induced bunch beam What is drift space? The separation between buncher and catcher gri What is magnetron? (NOV 2016) Magnetron is an electron tube for amplifying or controlled by an external magnetic field. What do you mean by O type tube? Name son In O-type tube a magnetic field whose axis co- beam together as it travels the length of the tu Helix travelling wave tube and coupled cavity T	s In M-Type tube, electric field is in the radial direction & magnetic field is in the axial direction. Magnetron is M-type beam tubes Low power device ator. mitters. Frequency range 3-9 GHz. current and cavity gap voltage. Is is called drift space. generating microwaves, with the flow of electrons ne O type tubes. ncides with the electron beam is used to hold the be. It's also called as linear beam tube. TYPES - WT.			
23. 24. 25. 26. 27. 28.	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tube Reflex Klystron, TWT are Linear beam tubes Low power device Write the application of backward wave oscil (1) Signal source sources in instrument and trans (2) Broad band noise source (3) Noise less oscillator with good bandwidth in Define Electronic Admittance. It is defined by the ratio of induced bunch beam What is drift space? The separation between buncher and catcher gri What is magnetron? (NOV 2016) Magnetron is an electron tube for amplifying or controlled by an external magnetic field. What do you mean by O type tube? Name son In O-type tube a magnetic field whose axis co- beam together as it travels the length of the tu Helix travelling wave tube and coupled cavity T How to minimize the lead inductance and inter	s In M-Type tube, electric field is in the radial direction & magnetic field is in the axial direction. Magnetron is M-type beam tubes Low power device ator. mitters. Frequency range 3-9 GHz. current and cavity gap voltage. Is is called drift space. generating microwaves, with the flow of electrons ne O type tubes. ncides with the electron beam is used to hold the be. It's also called as linear beam tube. TYPES - WT. relectrode capacitance. (NOV 2018)			
23. 24. 25. 26. 27. 28.	In O-Type tube , a magnetic field whose ax coincides with the electron beam is used hold the beam together as it travels the leng of the tube Reflex Klystron, TWT are Linear beam tubes Low power device Write the application of backward wave oscil (1) Signal source sources in instrument and trans (2) Broad band noise source (3) Noise less oscillator with good bandwidth in Define Electronic Admittance. It is defined by the ratio of induced bunch beam What is drift space? The separation between buncher and catcher gri What is magnetron? (NOV 2016) Magnetron is an electron tube for amplifying or controlled by an external magnetic field. What do you mean by O type tube? Name soo In O-type tube a magnetic field whose axis co beam together as it travels the length of the tu Helix travelling wave tube and coupled cavity T How to minimize the lead inductance and inter The lead inductance and inter electrode capacita and electrone	s In M-Type tube, electric field is in the radial direction & magnetic field is in the axial direction. Magnetron is M-type beam tubes Low power device ator. Low power device ator. mitters. frequency range 3-9 GHz. frequency range 3-9 GHz. current and cavity gap voltage. sis called drift space. generating microwaves, with the flow of electrons ncides with the electron beam is used to hold the be. It's also called as linear beam tube. TYPES - WT. r electrode capacitance. (NOV 2018) nee can be minimized by reducing the lead length			

100701	Thuching c	and interovate Engineering Department of BeE	2022 2025
29.	Disti	nguish between O-type and M-type tubes. (NO	OV 2018)
	Sl.No.	O Type tubes	M Type tubes
	1.	Linear beam tube	Crossed field tubes
	2.	DC magnetic field is in parallel with dc	DC magnetic field and dc electric
		electric field is used to focus the electrons	field are perpendicular to each
		beam.	other
	3.	Electron receive potential energy from the dc	Dc magnetic field plays a direct
		beam voltage before they arrive in the	role in the RF interaction process.
		microwave interaction region and converted	
		into kinetic energy	
		Example: Klystron, TWT	Magnetron
30.	Give two	examples for reciprocal microwave passive de	evice.(Nov 20)
	Passive p	ower splitter, Attenuator	
31.	A Reflex	Klystron is operated at 10 GHz with a dc beau	m voltage of 600 V for 1 3/4 mode,
	repeller s	space length of 1 mm and dc beam current of 1	12 mA. The beam coupling co-efficient
	is assume	ed to be 1. Calculate the repeller voltage.(Nov	20)
		$ V_R = \left[6.74 \times 10^{-6} \times f \times \frac{L}{N}\right]$	$\times \sqrt{V_o} - V_o$
		$L=1mm; N=1.75; V_0=600;$	f=10GHz
		$ V_R = \left[6.74 \times 10^{-6} \times 10 \times 10^9 \times \frac{1 \times 10^{-3}}{1.75}\right]$	$\times \sqrt{600} - 600 = -343.4 \text{V}$
32.	A directi	onal coupler is having coupling factor of 20	0 dB and directivity of 40 dB. If the
	incident	power is 800 mW, what is the coupled power?	(NOV/DEC 2021)
	Coupling	Factor (C) in dB = $10 \log_{10} (P_1/P_3) = 20$	
	Power su	pplied to port 1 is coupled to port 3 (the <i>coupled</i>	<i>port</i>)
	-	$P_1/P_3 = 100$; $P_1 = 800 \text{ mW}$; $P_3 = P_1 / P_3$	100 = 8 mW
	Coupled j	power = 8 mW	
33.	Specify the	he scattering matrix of a multi hole directiona	l coupler.(NOV/DEC 2021)
	1. Sv	metric Coupler: $\theta = \phi = \pi/2$.	
	Г О	$\alpha i\beta 01$	
	, a	$0 0 i\beta$	
	$[S] = \begin{bmatrix} \alpha \\ i \end{array}$		
		$i\beta \alpha 0$	
		ntisymmetric Coupler: $\theta = 0$ $\phi = \pi$	
	2. A	$\alpha \beta 0 1$	
	$[S] = \begin{bmatrix} \alpha \\ \alpha \end{bmatrix}$	$0 0 -\beta$	
	ß		
	L0	$-p \alpha v$ J	
1	Evolain h	ow Directional coupler can be used to measure	reflected power. Also Derive scattering
1.	Matrix fo	r Two hole Directional coupler (Nov2012) (May	v = 2013 & 2015 (Nov 2019)
2	Derive an	d explain the properties of H-plane tee and give	reasons why it is called shunt Tee (Nov
2.	2012 (M	av 2017)	reasons why it is called shuft ree. (1404
3	Derive an	d explain the properties of E-plane tee and give	reasons why it is called series Tee (Nov
5.	2014 (D	~ 2015 (May 2013) (May 2017)	reasons why it is called series ree. (1400
4	(i) Derive	the equation for scattering matrix of magic Tee (Nov 2013) (Nov 2017)
т.	(ii) Find t	he directivity in dh for a counter if the same pos	wer is applied in turn to input and output
	of the $correction of the correction of the cor$	unler with output terminated in each case in m	atched impedance. The auxiliary output
	readings	are 450mW and 0.710uW. (May 2014)	atomet impedance. The auxinary bulput
5	Explain fl	ne working of Attenuators with neat diagram $(\mathbf{M}$	[av 2014)(Dec 2015)
2.	-rrunn u	in the most of the second state of the second	

FC8701-Antennas	and	Microwave	Fnoinporing	Denar	tment of FCF
LC0/01 Innennus	unu	microwave	Lingincering	Depun	meni oj LCL

7.	Briefly Explain Gunn Effect & modes of operation of the Gunn Diode. Explain the working
	principle of Gunn diode with two valley model and plot its characteristics. (Dec 2015) (May
	2015) (Nov 2019)
8.	Derive the S matrix for a directional coupler and also verifying the properties of it (May 2018)
9.	(i) Derive the S matrix H plane TEE. (ii) Explain the mode of oscillation of gunn diode. (May 2018)
10.	 (i) Explain the construction of Magic Tee and derive its S-matrix.(Nov 2019) (ii) Derive the scattering matrix for a directional coupler. (Nov 2018)
11.	Describe the Gunn effect with the aid of two valley model theory
12.	Explain the working principle and operation of multi-cavity Klystron amplifier and derive the
	expression for its output power. (Nov 2016)
13.	Explain the working principle of Reflex klystron oscillator and derive output power & Efficiency.
	(Nov 2013) (Dec 2015) (Nov 2017)
14.	Explain the operation of TWT Amplifier & write its characteristics. (Dec 2015) (Nov & May
	2017)
15.	Explain π mode of operation of Magnetron Oscillators mention few high frequency limitations.
	(May 2015)
16.	A Reflex klystron is to be operated at frequency of 10 GHz, with dc beam voltage 300V, repeller
	space 0.1 cm for 1 $\stackrel{3}{_}$ mode. Calculate P _{RFmax} and corresponding repeller voltage for a beam
	4
	current of 20 mA.
17.	A Reflex klystron is to be operated at frequency of 9 GHz, with dc beam voltage 600V, repeller
	space 1 cm for 1 mode Calculate electronic efficiency output power and corresponding
	4
	repeller voltage for a beam current of 10 mA. The beam coupling coefficient is assumed to be 1.
18.	A two-cavity klystron amplifier is tuned at 3 GHz. The drift space length is 2cm and beam current
	is 25mA. The catcher voltage is 0.3 times the beam voltage. It is assumed that the gap length of
	the cavity \ll the drift space so that the input and output voltages are in phase ($\beta = 1$). Compute (a)
	Power output and efficiency for N_{-5} (b) Peem voltage input voltage and output voltage for
	Fower output and enciency for $N = 3 = (b)$ Beam voltage, input voltage and output voltage for 4
	maximum power output of $N=5 - mode$.
10	4 A two-cavity klystron amplifier operates at 5CHz with a do beam voltage of 10KV and a 2 mm
1).	cavity gap. For a given input RF voltage, the magnitude of the gap voltage is 100 volts. Calculate
	the transit time at the cavity gap, the transit angle, and the velocity of the electrons leaving the
	and the velocity of the electrons leaving the
20	An X- band pulsed conventional magnetron has the following operating parameters: Anode
20.	Voltage $V_0 = 55$ KV Beam current is 45 mA Operating frequency 9GHz Resonator
	conductance 2×10^{-4} mbo Loaded conductance 2.5×10^{-4} mbo Vane canacitance is 2.5 PF Duty
	cycle 0.002 Power loss is 18.5 KW Compute 1) Angular resonant frequency 2) Unloaded quality
	factor 3) loaded quality factor 4) external quality factor 5) circuit efficiency 6) electronic
	efficiency
21.	A 250kw pulsed cylindrical magnetron has the following parameters. Anode voltage = $25Kv_{\rm p}$ peak
	anode current = 25 A. Magnetic field = 0.35 Wb/m ² . Radius of the cathode = 4CM. Radius of the
	Anode = 8CM, Calculate efficiency of the magnetron. cvclotron angular frequency. Cutoff
	magnetic field. (May 2013)

22.	Write a detailed note on cylindrical magnetron (Nov 2013) (Nov 2017)(Nov 2019)
23.	A traveling wave tube (TWT) operates under the following parameters: Beam Voltage V ₀ =3Kv;
	Beam Current I ₀ =30ma; Characteristics impedance of helix = Z_0 =10 Ω ; Circuit length =N=50m;
	Frequency f=10GHz. Determine: (i) gain parameters C (ii) Output power gain A _p in decibels. (iii)
	All four propagation constants. (Nov 2016)
24.	With neat diagram explain the operation of two cavity Klystron amplifier and derive the equations
	for velocity modulation process. (May 2017)(Nov 2019)
25.	(i) Draw a neat sketch showing the constructional features of a cavity magnetron and explain why
	magnetron is called as crossed field device.
	(ii) Derive an expression for cut off magnetic field for a cylindrical magnetron. (Nov 2019)
26.	A reflex klystron is operated at 8 GHz with dc beam voltage of 600 V for 1.75 mode, repeller space length of 1mm, and dc beam current of 9 mA. The beam coupling coefficient assumed to be 1. Calculate the repeller voltage, electronic efficiency and output power.
27	$v_0 = 600 v$, L= Imm, $I_0 = 9mA$ $B_0 = 1$, I=8 GHZ, n =2 or 1° mode. (May 2018)
27.	 (i) Draw the schematic of two cavity Klystron amplifier and explain the process of velocity modulation and bunching .Also derive the equation of velocity modulation. (ii) With neat diagram, explain how amplification of RF wave is accomplished in Helix type TWT. (Nov 2018)
28.	(i)Draw the cross sectional view of Magnetron tube and explain the process of bunching. Derive the expression for Hull cut off voltage. (ii) Compare TWT and Klystron(Nov 2018)
29.	A two cavity Klystron amplifier has the following specifications.
	Beam Voltage V_0 = 900V;Beam current I ₀ =30mA;Frequency f= 8 GHz.
	Gap spacing in either cavity $d=1mm$; Spacing between center of cavities $L=4cm$
	Electron (iii) Maximum input voltage (iv) Voltage gain (Nov 2018)
30.	Write short notes on the following Microwave passive devices along with S parameters.
	i) Directional Couplers. ii) Attenuator. (Nov 20)
31.	i) With the help of two valley theory, explain how negative resistance is created in Gunn diodes.ii) Describe the construction and operation of a basic magnetron. (Nov 20)
32.	i) Describe with neat sketch the construction details and principle of operation of Klystron
	amplifier and derive the expression for its optimum bunching distance Lopt. (Nov 20)
33.	Discuss the working principle of Gunn diode as a transferred electron device with two valley
	model. Also draw the structure, equivalent circuit and V-I characteristics of Gunn
	diode.(NOV/DEC 2021)
34.	Illustrate the operation and properties of power divider; also derive the S-parameters.(NOV 2021)
	UNIT V MICROWAVE DESIGN PRINCIPLES
Impe	dance transformation, Impedance Matching, Microwave Filter Design, RF and Microwave
Amp	lifier Design, Microwave Power amplifier Design, Low Noise Amplifier Design, Microwave Mixer
Desig	gn, Microwave Oscillator Design
1	UNII-V / rAKI-A What do you mean by impedance matching? (May 2018)
1.	The basic idea of impedance matching is illustrated in the following figure, which shows an
	impedance matching network placed between a load impedance and a transmission line. The matching network is ideally lossless, to avoid unnecessary loss of power, and is usually designed
	so that the impedance seen looking into the matching network is Z_0 . Then reflections will be
	eliminated on the transmission line to the left of the matching network, although there will usually
	be multiple reflections between the matching network and the load. This procedure is sometimes
	Matching Load
	\sim_0 network Z_L

2.	Why impedance matching is significant in a microwave system? (May 2015)
	 Maximum power is delivered when the load is matched to the line (assuming the generator
	is matched), and power loss in the feed line is minimized.
	• Impedance matching sensitive receiver components (antenna, low-noise amplifier, etc.)
	may improve the signal-to-noise ratio of the system.
	Impedance matching in a power distribution network (such as an antenna array feed
2	network) may reduce amplitude and phase errors.
5.	(Nov 2010)
	Complexity Bandwidth Implementation and Adjustability
4	Define a filter
	A filter is a two-port network used to control the frequency response at a certain point in an RF or
	microwave system by providing transmission at frequencies within the passband of the filter and
	attenuation in the stopband of the filter. Typical frequency responses include low-pass, high-pass,
	bandpass, and band-reject characteristics. Applications can be found in virtually any type of RF or
	microwave communication, radar, or test and measurement system.
5.	Write about microwave filter implementation.
	The lumped-element filter designs generally work well at low frequencies, but two problems
	arise at higher RF and microwave frequencies. First, lumped-element inductors and capacitors are
	generally available only for a limited range of values, and can be difficult to implement at
	microwave frequencies. Distributed elements, such as open-circuited or short-circuited
	transmission line stubs, are often used to approximate ideal lumped elements. In addition, at
	The first much law is treated with Dishards' transformation which say he used to account
	lumped elements to transmission line sections. Kurada's identities can then be used to convert
	separate filter elements by using transmission line sections. Recause such additional transmission
	line sections do not affect the filter response this type of design is called redundant filter
	synthesis. It is possible to design microwave filters that take advantage of these sections to
	improve the filter response: such nonredundant synthesis does not have a lumped-element
	counterpart.
6.	State the principle behind Richards' transformation.
	Richards' transformation allows the inductors and capacitors of a lumped-element filter to be
	replaced with short-circuited and open-circuited transmission line stubs, as illustrated in following
	figure. Since the electrical lengths of all the stubs are the same ($\lambda/8$ at ω_c), these lines are called
	commensurate lines.
7.	What is the role of Kuroda's Identities in filter implementation?
	The four Kuroda identifies use redundant transmission line sections to achieve a more practical
	microwave filter implementation by performing any of the following operations:
	• Physically separate transmission line studs
	• Transform series stubs into shunt stubs, or vice versa
	Change impractical characteristic impedances into more realizable values
8.	Sketch Richard's transformation
	$\lambda/8 \text{ at } \omega_c$
	$jX_L \Longrightarrow jX_L \Longrightarrow S.C.$
	$Z_0 = L$
	(a)
	$\lambda/8 \text{ at } \omega_c$
	$jB_c \Longrightarrow \qquad $
	$ Z_0 = \frac{1}{C} $
	(b)
	Richards' transformation. (a) For an inductor to a short-circuited stub. (b) For a
	capachor to an open-circuned stud.
1	

EC8701-Antennas and Microwave Engineering Department of ECE

The Four Kiroda Identities $(n^{-2} = 1 + 2_2/2_1)$ $\frac{z_1}{z_2}$ z_1 z_1 z_2 z_2 z_2 z_3 (a) $\frac{z_1}{z_2}$ z_2 z_2 z_3 z_4 z_1 $\frac{z_1}{n^2}$ $\frac{z_2}{n^2}$ $\frac{z_1}{n^2}$ $\frac{z_1}{n^2}$ $\frac{z_2}{n^2}$ $\frac{z_1}{n^2}$ $\frac{z_1}{n^2}$ $\frac{z_2}{n^2}$ $\frac{z_1}{n^2}$ $\frac{z_1}{n^2}$ $\frac{z_2}{n^2}$ $\frac{z_1}{n^2}$ \frac				1 . 7 (7)		
$\frac{z_1}{z_2}$ $\frac{z_1}{z_2}$ $\frac{z_1}{z_2}$ $\frac{z_1}{z_2}$ $\frac{z_2}{z_2}$ $\frac{z_2}{z_2}$ $\frac{z_2}{z_2}$ $\frac{z_2}{z_2}$ $\frac{z_2}{z_2}$ $\frac{z_2}{z_1}$ $\frac{z_2}{z_2}$ $\frac{z_2}{z_2}$ $\frac{z_2}{z_1}$ $\frac{z_2}{z_1}$ $\frac{z_2}{z_2}$ $\frac{z_2}{z_1}$ $\frac{z_1}{z_2}$ $\frac{z_2}{z_1}$ $\frac{z_2}{z_1}$ $\frac{z_2}{z_1}$ $\frac{z_2}{z_1}$ $\frac{z_1}{z_2}$ $\frac{z_2}{z_1}$ $\frac{z_1}{z_2}$ $\frac{z_2}{z_1}$ $\frac{z_1}{z_1}$ $\frac{z_2}{z_1}$ $\frac{z_2}{z_1}$ $\frac{z_1}{z_1}$ $\frac{z_1}{z_1}$ $\frac{z_2}{z_1}$ $\frac{z_1}{z_1}$		The Four Kur	oda Identities $(n^2 =$	$1 + Z_2/Z_1$)		_
$\frac{1}{z_2}$ $\frac{1}$					$\frac{Z_1}{n^2}$	
$\frac{1}{z_2}$ $\frac{1}$	°		o	7	└───~	
(a) (a) (b) z_1 z_2 (c) z_1 z_2 (c) z_1 z_2 (c) z_1 z_2 (c) z_1 z_2 (c) z_1 z_2 (c) z_1 z_2 (c) z_1 z_2 (d) Mention the significance of Microwave transistor amplifiers. Most RF and microwave amplifiers today use transistor devices such as Si BJTs, GaAs or HBTs, Si MOSFETS, GaAs MESFETS, or GaAs or GaN HEMTs. Microwave transistor ampli are rugged, low-cost, and reliable and can be easily integrated in both hybrid and mono integrated circuitry. Transistor amplifiers can be used at frequencies in excess of 100 GHZ wide range of applications requiring small size, low noise figure, broad bandwidth, and medit high power capacity. Although microwave tubes are still useful for very high power and/or high frequency applications, continuing improvement in the performance of microwave transist is steadily reducing the need for microwave tubes. List out the usual microwave amplifier design goals. i. Maximum power gain. ii. Minimum noise figure for the first stage. iii. Stable gain, i.e., no oscillations. iv. Input and Output VSWR as close to unity as possible. v. Adequate gain and uniformity of gain over a specified frequency band. vi. Phase response that is a linear function of ω (no distortion, only group delay). vii. Insensitivity to nominal changes or variations in the device S _{ij} parameters. Define Power gain . Define Power gain $G_{a} = P_{avn}P_{avs}$ is the ratio of the power available from the two- network to the power available from the source. This assumes conjugate matching of bol source and the load, and depends on Z_s , but not Z_L . Define Transducer power gain . (Nov 2013 & May 2017)/	$\frac{1}{Z_2}$	Z_1	=	$\frac{Z_2}{n^2}$		
 (a) (b) (c) (c)	0	- <u> </u>	o		c	
$\sum_{i=1}^{z_1} \sum_{i=1}^{z_2} $			(a)			
$Z_{2} = \frac{n^{2}Z_{1}}{n^{2}Z_{2}} = \frac{1}{n^{2}Z_{2}} = \frac{1}{n^{2}Z_{$	Z_1					
Mention the significance of Microwave transistor amplifiers. Most RF and microwave amplifiers today use transistor devices such as Si BJTs, GaAs or HBTs, Si MOSFETs, GaAs MESFETs, or GaAs or GaN HEMTs. Microwave transistor amplifiers today use transistor devices such as Si BJTs, GaAs or HBTs, Si MOSFETs, GaAs MESFETs, or GaAs or GaN HEMTs. Microwave transistor amplifiers can be used at frequencies in excess of 100 GHz wide range of applications requiring small size, low noise figure, broad bandwidth, and mediu high power capacity. Although microwave tubes are still useful for very high power and/ high power capacity. Although microwave tubes. List out the usual microwave amplifier design goals. i. Maximum power gain. ii. Minimum noise figure for the first stage. iii. Stable gain, i.e., no oscillations. iv. Input and Output VSWR as close to unity as possible. v. Adequate gain and uniformity of gain over a specified frequency band. vi. Phase response that is a linear function of ω (no distortion, only group delay). vii. Insensitivity to nominal changes or variations in the device S _{ij} parameters. Define Power gain. <i>Power gain = G = P₁/P_{in}</i> is the ratio of power dissipated in the load Z ₄ to the power deliver the input of the two-port network. This gain is independent of Z ₅ , although the characteristi some active devices may be deependent on Z ₅ . Define Available power gain. (Nov 2013 & May 2017)/ Define Transducer power gain. (Nov 2013 & May 2017)/	U	Za	=	n^2Z_1		~
 (b) (c) (c)	o		o o		n ² Z ₂	>
$\frac{1}{z_1} \begin{bmatrix} z_2 \\ z_2 \\ z_3 \\ z_4 \\ z_5 \\ z_6 \\ z_1 \\ z_2 \\ z_6 \\ z_1 \\ z_2 \\ z_2 \\ z_2 \\ z_1 \\ z_2 \\ z_2 \\ z_2 \\ z_1 \\ z_2 \\ z_2 \\ z_2 \\ z_1 \\ z_2 \\ z_2 \\ z_1 \\ z_2 \\ z_2 \\ z_1 \\ z_1 \\ z_2 \\ z_1 \\ z_1 \\ z_2 \\ z_1 $			(b)			
Mention the significance of Microwave transistor amplifiers. Most RF and microwave amplifiers today use transistor devices such as Si BJTs, GaAs or HBTs, Si MOSFETs, GaAs MESFETs, or GaAs or GaN HEMTs. Microwave transistor ampli are rugged, low-cost, and reliable and can be easily integrated in both hybrid and mono integrated circuitry. Transistor amplifiers can be used at frequencies in excess of 100 GHZ wide range of applications requiring small size, low noise figure, broad bandwidth, and medit high power capacity. Although microwave tubes are still useful for very high power and/or high frequency applications, continuing improvement in the performance of microwave transit is steadily reducing the need for microwave tubes. List out the usual microwave amplifier design goals. i. Maximum power gain. ii. Minimum noise figure for the first stage. iii. Stable gain, i.e., no oscillations. iv. Input and Output VSWR as close to unity as possible. v. Adequate gain and uniformity of gain over a specified frequency band. vi. Phase response that is a linear function of ω (no distortion, only group delay). vii. Insensitivity to nominal changes or variations in the device S_{ij} parameters. Define Power gain . <i>Power gain</i> = $G = P_l/P_m$ is the ratio of power dissipated in the load Z_l to the power deliver the input of the two-port network. This gain is independent of $Z_{5,}$ although the characteristi some active devices may be dependent on Z_8 . Define Available power gain . (Dec 2015) (Nov 20) <i>Available power gain</i> = $G_A = P_{avv}P_{av}$ is the ratio of the power available from the two- network to the power gain. (Nov 2013 & May 2017)/					$1: n^2$	
X =1 E $\sum_{1}^{n^2}$ E = \sum_{1}^{n^2} E $\sum_{1}^{n^2}$ E $\sum_{1}^{n^2}$ E $\sum_{1}^{n^2}$ E $\sum_{1}^{n^2}$ E $\sum_{1}^{n^2}$ E $\sum_{1}^{n^2}$ E = \sum_{1}^{n^2} E $\sum_{1}^{n^2}$ E $\sum_{1}^{n^2}$ E $\sum_{1}^{n^2}$ E = \sum_{1}^{n^2} E $\sum_{1}^{n^2}$ E $\sum_{1}^{n^2}$ E	~ {		o	Z ₂	$\{z_1, z_2\}$)
Mention the significance of Microwave transistor amplifiers. Most RF and microwave amplifiers today use transistor devices such as Si BJTs, GaAs or HBTs, Si MOSFETs, GaAs MESFETs, or GaAs or GaN HEMTs. Microwave transistor ampli are rugged, low-cost, and reliable and can be easily integrated in both hybrid and mono integrated circuitry. Transistor amplifiers can be used at frequencies in excess of 100 GHz wide range of applications requiring small size, low noise figure, broad bandwidth, and medin high power capacity. Although microwave tubes are still useful for very high power and/or high frequency applications, continuing improvement in the performance of microwave transis is steadily reducing the need for microwave tubes. List out the usual microwave amplifier design goals. i. Maximum power gain. ii. Minimum noise figure for the first stage. iii. Stable gain, i.e., no oscillations. iv. Input and Output VSWR as close to unity as possible. v. Adequate gain and uniformity of gain over a specified frequency band. vi. Phase response that is a linear function of ω (no distortion, only group delay). vii. Insensitivity to nominal changes or variations in the device S _{ij} parameters. Define Power gain . <i>Power gain</i> = $G = P_L/P_{\rm in}$ is the ratio of power dissipated in the load Z_L to the power deliver the input of the two-port network. This gain is independent of Z_5 , although the characteristis some active devices may be dependent on Z_5 . Define Available power gain. (Dec 2015) (Nov 20) <i>Available power gain</i> = $G_A = P_{ava}/P_{ava}$ is the ratio of the power available from the two- network to the power available from the source. This assumes conjugate matching of bott source and the load, and depends on Z_5 , but not Z_L .	21	Z ₂	=	$\frac{1}{n^2}$	$\left\{\frac{1}{n^2}\right\}$	
$\frac{1}{Z_2}$ $\frac{1}{Z_2}$ $\frac{1}{Z_1}$ $\frac{1}{Z_2}$ $\frac{1}{R^2Z_2}$ $\frac{1}{R^2Z_1}$ $\frac{1}{R^2Z_2}$ $\frac{1}{R^2Z_1}$ $\frac{1}{R^2Z_2}$ $\frac{1}{R^2Z_1}$ $\frac{1}{R^2Z_2}$ $\frac{1}{R^2Z_1}$ $\frac{1}{R^2Z_2}$ $\frac{1}{R^2Z_1}$ $\frac{1}{R^2Z_1}$ $\frac{1}{R^2Z_1}$ $\frac{1}{R^2Z_2}$ $\frac{1}{R^2Z_1}$ $\frac{1}{R^2Z_1}$ $\frac{1}{R^2Z_2}$ $\frac{1}{R^2Z_1}$ $\frac{1}{R^2Z_2}$ $\frac{1}{R^2Z_1}$ $\frac{1}{R^2Z_2}$ $\frac{1}{R^2Z_1}$ $\frac{1}{R^2Z_2}$ $\frac{1}{R^2Z_1}$ $\frac{1}{R^2Z_2}$ $\frac{1}{R^2Z_1}$ $\frac{1}{R^2Z_2}$ $\frac{1}{R^2Z_2}$ $\frac{1}{R^2Z_2}$ $\frac{1}{R^2Z_1}$ $\frac{1}{R^2Z_2}$ $\frac{1}{R^2Z_2}$ $\frac{1}{R^2Z_1}$ $\frac{1}{R^2Z_2}$ $\frac{1}{R^2Z_1}$ $\frac{1}{R^2Z_2}$ \frac	0		(c)		~ ~ ~ ~ ~ ~ ~ ~ ~	,
Mention the significance of Microwave transistor amplifiers. Most RF and microwave amplifiers today use transistor devices such as Si BJTs, GaAs or HBTs, Si MOSFETs, GaAs MESFETs, or GaAs or GaN HEMTs. Microwave transistor ampl are rugged, low-cost, and reliable and can be easily integrated in both hybrid and mono integrated circuitry. Transistor amplifiers can be used at frequencies in excess of 100 GHz wide range of applications requiring small size, low noise figure, broad bandwidth, and medit high power capacity. Although microwave tubes are still useful for very high power and/or high frequency applications, continuing improvement in the performance of microwave transi is steadily reducing the need for microwave tubes. List out the usual microwave amplifier design goals. i. Maximum power gain. ii. Minimum noise figure for the first stage. iii. Stable gain, i.e., no oscillations. iv. Input and Output VSWR as close to unity as possible. v. Adequate gain and uniformity of gain over a specified frequency band. vi. Phase response that is a linear function of ω (no distortion, only group delay). vii. Insensitivity to nominal changes or variations in the device S _{ij} parameters. Define Power gain . <i>Power gain</i> = $G_{1} = P_{avw}/P_{avs}$ is the ratio of the power available from the two- network to the power available from the source. This assumes conjugate matching of bot source and the load, and depends on Z_{5} , but not Z_{L} . Define Transducer power gain . (Nov 2013 & May 2017)/	$\frac{1}{Z_2}$				$\frac{1}{n^2 Z_2}$	
$I_{1} = I_{1} = I_{2} = I_{2$	- Î		o o		$n^2 = 1$)
Mention the significance of Microwave transistor amplifiers. Most RF and microwave amplifiers today use transistor devices such as Si BJTs, GaAs or HBTs, Si MOSFETs, GaAs MESFETs, or GaAs or GaN HEMTs. Microwave transistor ampli are rugged, low-cost, and reliable and can be easily integrated in both hybrid and mono integrated circuitry. Transistor amplifiers can be used at frequencies in excess of 100 GHz wide range of applications requiring small size, low noise figure, broad bandwidth, and medit high power capacity. Although microwave tubes are still useful for very high power and/or high frequency applications, continuing improvement in the performance of microwave transi is steadily reducing the need for microwave tubes. List out the usual microwave amplifier design goals. i. Maximum power gain. ii. Minimum noise figure for the first stage. iii. Stable gain, i.e., no oscillations. iv. Input and Output VSWR as close to unity as possible. v. Adequate gain and uniformity of gain over a specified frequency band. vi. Phase response that is a linear function of ω (no distortion, only group delay). vii. Insensitivity to nominal changes or variations in the device S _{ij} parameters. Define Power gain. <i>Power gain</i> = $G = P_L/P_{\rm in}$ is the ratio of power dissipated in the load Z_L to the power deliver the input of the two-port network. This gain is independent of $Z_{\rm S}$, although the characteristis some active devices may be dependent on $Z_{\rm S}$. Define Available power gain = $G_A = P_{\rm avar}/P_{\rm avas}$ is the ratio of the power available from the two- network to the power available from the source. This assumes conjugate matching of bod source and the load, and depends on Z_S , but not Z_L . Define Transducer power gain. (Nov 2013 & May 2017)/		Z_1	=	$n^{2}Z_{1}$	38	
(d) Mention the significance of Microwave transistor amplifiers. Most RF and microwave amplifiers today use transistor devices such as Si BJTs, GaAs or HBTs, Si MOSFETs, GaAs MESFETs, or GaAs or GaN HEMTs. Microwave transistor ampli are rugged, low-cost, and reliable and can be easily integrated in both hybrid and mono integrated circuitry. Transistor amplifiers can be used at frequencies in excess of 100 GHz wide range of applications requiring small size, low noise figure, broad bandwidth, and mediu high power capacity. Although microwave tubes are still useful for very high power and/or high frequency applications, continuing improvement in the performance of microwave transi is steadily reducing the need for microwave tubes. List out the usual microwave amplifier design goals. i. Maximum power gain. ii. Minimum noise figure for the first stage. iii. Stable gain, i.e., no oscillations. iv. Input and Output VSWR as close to unity as possible. v. Adequate gain and uniformity of gain over a specified frequency band. vi. Phase response that is a linear function of ω (no distortion, only group delay). vii. Insensitivity to nominal changes or variations in the device S _{ij} parameters. Define Power gain. <i>Power gain</i> = $G = P_L/P_{in}$ is the ratio of power dissipated in the load Z_L to the power deliver the input of the two-port network. This gain is independent of Z_s although the characteristic some active devices may be dependent on Z_s . Define Available power gain. (Dec 2015) (Nov 20) $Available power gain = G_A = P_{avn}/P_{avs}$ is the ratio of the power available from the two- network to the power available from the source. This assumes conjugate matching of bot source and the load, and depends on Z_s , but not Z_L . Define Transducer power gain. (Nov 2013 & May 2017)/	0	L	o) C _o	>
Mention the significance of Microwave transistor amplifiers. Most RF and microwave amplifiers today use transistor devices such as Si BJTs, GaAs or HBTs, Si MOSFETs, GaAs MESFETs, or GaAs or GaN HEMTs. Microwave transistor ampli are rugged, low-cost, and reliable and can be easily integrated in both hybrid and mono integrated circuitry. Transistor amplifiers can be used at frequencies in excess of 100 GHz wide range of applications requiring small size, low noise figure, broad bandwidth, and medit high power capacity. Although microwave tubes are still useful for very high power and/or high frequency applications, continuing improvement in the performance of microwave transi is steadily reducing the need for microwave tubes. List out the usual microwave amplifier design goals. i. Maximum power gain. ii. Minimum noise figure for the first stage. iii. Stable gain, i.e., no oscillations. iv. Input and Output VSWR as close to unity as possible. v. Adequate gain and uniformity of gain over a specified frequency band. vi. Phase response that is a linear function of ω (no distortion, only group delay). vii. Insensitivity to nominal changes or variations in the device S _{ij} parameters. Define Power gain . <i>Power gain</i> = <i>G</i> = <i>P</i> _L / <i>P</i> _{in} is the ratio of power dissipated in the load <i>Z</i> _L to the power deliver the input of the two-port network. This gain is independent of <i>Z</i> _S although the characteristis some active devices may be dependent on <i>Z</i> _S . Define Available power gain = <i>G</i> _A = <i>P</i> _{avn} / <i>P</i> _{avs} is the ratio of the power available from the two- network to the power available from the source. This assumes conjugate matching of bott source and the load, and depends on <i>Z</i> _S , but not <i>Z</i> _L . Define Transducer power gain . (Nov 2013 & May 2017)/			(d)			_
List out the usual microwave amplifier design goals. i. Maximum power gain. ii. Minimum noise figure for the first stage. iii. Stable gain, i.e., no oscillations. iv. Input and Output VSWR as close to unity as possible. v. Adequate gain and uniformity of gain over a specified frequency band. vi. Phase response that is a linear function of ω (no distortion, only group delay). vii. Insensitivity to nominal changes or variations in the device S _{ij} parameters. Define Power gain. <i>Power gain</i> = $G = P_L/P_{in}$ is the ratio of power dissipated in the load Z_L to the power deliver the input of the two-port network. This gain is independent of Z_S , although the characteristis some active devices may be dependent on Z_S . Define Available power gain = $G_A = P_{avir}/P_{avs}$ is the ratio of the power available from the two- network to the power available from the source. This assumes conjugate matching of bott source and the load, and depends on Z_S , but not Z_L . Define Transducer power gain. (Nov 2013 & May 2017)/	Most RF an HBTs, Si M are rugged, integrated ci wide range c	d microwave an OSFETs, GaAs low-cost, and ircuitry. Transis of applications r	mplifiers today use MESFETs, or GaAs reliable and can be stor amplifiers can be equiring small size,	transistor device or GaN HEMT easily integrate be used at freque low noise figure	s such as Si BJT s. Microwave tran ed in both hybric encies in excess , broad bandwidth	Ts, GaAs or S nsistor ampli- and monol of 100 GHz h, and medium
i. Maximum power gain. ii. Minimum noise figure for the first stage. iii. Stable gain, i.e., no oscillations. iv. Input and Output VSWR as close to unity as possible. v. Adequate gain and uniformity of gain over a specified frequency band. vi. Phase response that is a linear function of ω (no distortion, only group delay). vii. Insensitivity to nominal changes or variations in the device S _{ij} parameters. Define Power gain. <i>Power gain</i> = $G = P_L/P_{in}$ is the ratio of power dissipated in the load Z_L to the power deliver the input of the two-port network. This gain is independent of Z_S , although the characteristis some active devices may be dependent on Z_S . Define Available power gain. (Dec 2015) (Nov 20) <i>Available power gain</i> = $G_A = P_{avn}/P_{avs}$ is the ratio of the power available from the two- network to the power available from the source. This assumes conjugate matching of both source and the load, and depends on Z_S , but not Z_L . Define Transducer power gain. (Nov 2013 & May 2017)/	Most RF an HBTs, Si M are rugged, integrated ci wide range c high power high frequen is steadily re	d microwave an OSFETs, GaAs low-cost, and ircuitry. Transis of applications r capacity. Althou cy applications educing the need	mplifiers today use MESFETs, or GaAs reliable and can be stor amplifiers can b equiring small size, ugh microwave tube , continuing improve l for microwave tube	transistor device s or GaN HEMT easily integrate be used at freque low noise figure es are still usefut ement in the perfess.	s such as Si BJT s. Microwave tran ed in both hybric encies in excess of broad bandwidth for very high po formance of micro	Ts, GaAs or S nsistor amplit and monol of 100 GHz h, and medium ower and/or owave transis
 ii. Minimum noise figure for the first stage. iii. Stable gain, i.e., no oscillations. iv. Input and Output VSWR as close to unity as possible. v. Adequate gain and uniformity of gain over a specified frequency band. vi. Phase response that is a linear function of ω (no distortion, only group delay). vii. Insensitivity to nominal changes or variations in the device S_{ij} parameters. Define Power gain. <i>Power gain = G = P_L/P_{in}</i> is the ratio of power dissipated in the load Z _L to the power deliver the input of the two-port network. This gain is independent of Z _S , although the characteristi some active devices may be dependent on Z _S . Define Available power gain. (Dec 2015) (Nov 20) <i>Available power gain = G_A = P_{avn}/P_{avs}</i> is the ratio of the power available from the two-network to the power available from the source. This assumes conjugate matching of both source and the load, and depends on Z _S , but not Z _L . Define Transducer power gain. (Nov 2013 & May 2017)/	Most RF an HBTs, Si M are rugged, integrated ci wide range c high power high frequen is steadily re List out the	d microwave an OSFETs, GaAs low-cost, and ircuitry. Transis of applications r capacity. Althou cy applications. ducing the need usual microwa	mplifiers today use MESFETs, or GaAs reliable and can be stor amplifiers can be equiring small size, ugh microwave tube , continuing improve for microwave tube	transistor device or GaN HEMT easily integrate be used at freque low noise figure es are still useful ement in the perfe- es.	s such as Si BJT s. Microwave tran ed in both hybrid encies in excess of broad bandwidth for very high po formance of micro	Ts, GaAs or S nsistor ampli- 1 and monol- of 100 GHz h, and medium ower and/or owave transis
iii. Stable gain, i.e., no oscillations. iv. Input and Output VSWR as close to unity as possible. v. Adequate gain and uniformity of gain over a specified frequency band. vi. Phase response that is a linear function of ω (no distortion, only group delay). vii. Insensitivity to nominal changes or variations in the device S _{ij} parameters. Define Power gain. <i>Power gain</i> = $G = P_L/P_{in}$ is the ratio of power dissipated in the load Z_L to the power deliver the input of the two-port network. This gain is independent of Z_S , although the characteristic some active devices may be dependent on Z_S . Define Available power gain = $G_A = P_{avn}/P_{avs}$ is the ratio of the power available from the two- network to the power available from the source. This assumes conjugate matching of both source and the load, and depends on Z_S , but not Z_L . Define Transducer power gain . (Nov 2013 & May 2017)/	Most RF an HBTs, Si M are rugged, integrated ci wide range c high power high frequent is steadily re List out the i. Maxim	d microwave an OSFETs, GaAs low-cost, and ircuitry. Transis of applications r capacity. Althou cy applications, educing the need usual microwa num power gain	mplifiers today use MESFETs, or GaAs reliable and can be stor amplifiers can be equiring small size, ugh microwave tube , continuing improve l for microwave tube we amplifier design	transistor device s or GaN HEMT easily integrate be used at freque low noise figure es are still usefu ement in the perf es. a goals.	s such as Si BJT s. Microwave tran ed in both hybrid encies in excess of broad bandwidth for very high po formance of micro	Ts, GaAs or S nsistor amplit 1 and monol of 100 GHz h, and medium ower and/or owave transis
iv. Input and Output VSWR as close to unity as possible. v. Adequate gain and uniformity of gain over a specified frequency band. vi. Phase response that is a linear function of ω (no distortion, only group delay). vii. Insensitivity to nominal changes or variations in the device S _{ij} parameters. Define Power gain. <i>Power gain</i> = $G = P_L/P_{in}$ is the ratio of power dissipated in the load Z_L to the power deliver the input of the two-port network. This gain is independent of Z_S , although the characteristic some active devices may be dependent on Z_S . Define Available power gain. (Dec 2015) (Nov 20) <i>Available power gain</i> = $G_A = P_{avn}/P_{avs}$ is the ratio of the power available from the two- network to the power available from the source. This assumes conjugate matching of both source and the load, and depends on Z_S , but not Z_L . Define Transducer power gain. (Nov 2013 & May 2017)/	Most RF an HBTs, Si M are rugged, integrated ci wide range c high power high frequen is steadily re List out the i. Maxin ii. Mini	d microwave an OSFETs, GaAs low-cost, and ircuitry. Transis of applications r capacity. Altho- ncy applications, educing the need usual microwa num power gain mum noise figu	mplifiers today use mplifiers today use MESFETs, or GaAs reliable and can be stor amplifiers can be equiring small size, ugh microwave tube, continuing improved for microwave tube to amplifier design and the store amplifier design and the store for the first stage.	transistor device or GaN HEMT easily integrate be used at freque low noise figure es are still usefu ement in the perf es. a goals.	s such as Si BJT s. Microwave tran ed in both hybric encies in excess , broad bandwidth l for very high pe formance of micro	Ts, GaAs or S nsistor ampli 1 and monol of 100 GHz h, and medium ower and/or owave transis
v. Adequate gain and uniformity of gain over a specified frequency band. vi. Phase response that is a linear function of ω (no distortion, only group delay). vii. Insensitivity to nominal changes or variations in the device S _{ij} parameters. Define Power gain. <i>Power gain</i> = $G = P_L/P_{in}$ is the ratio of power dissipated in the load Z_L to the power deliver the input of the two-port network. This gain is independent of Z_S , although the characteristic some active devices may be dependent on Z_S . Define Available power gain. (Dec 2015) (Nov 20) <i>Available power gain</i> = $G_A = P_{avn}/P_{avs}$ is the ratio of the power available from the two- network to the power available from the source. This assumes conjugate matching of both source and the load, and depends on Z_S , but not Z_L . Define Transducer power gain. (Nov 2013 & May 2017)/	Most RF an HBTs, Si M are rugged, integrated ci wide range c high power high frequent is steadily re List out the i. Maxin ii. Mini iii. Stabl	d microwave an OSFETs, GaAs low-cost, and ircuitry. Transis of applications r capacity. Altho- ncy applications, educing the need usual microwa num power gain mum noise figu le gain, i.e., no c	mplifiers today use MESFETs, or GaAs reliable and can be stor amplifiers can be equiring small size, ugh microwave tube , continuing improve <u>1 for microwave tube</u> to amplifier design re for the first stage. oscillations.	transistor device s or GaN HEMT easily integrate be used at freque low noise figure es are still usefu ement in the perf es. a goals.	s such as Si BJT s. Microwave tran ed in both hybrid encies in excess of broad bandwidth for very high po formance of micro	Ts, GaAs or S nsistor ampli 1 and monol of 100 GHz h, and medium ower and/or owave transis
vi. Phase response that is a linear function of ω (no distortion, only group delay). vii. Insensitivity to nominal changes or variations in the device S _{ij} parameters. Define Power gain. <i>Power gain</i> = $G = P_L/P_{in}$ is the ratio of power dissipated in the load Z_L to the power deliver the input of the two-port network. This gain is independent of Z_S , although the characteristic some active devices may be dependent on Z_S . Define Available power gain. (Dec 2015) (Nov 20) <i>Available power gain</i> = $G_A = P_{avn}/P_{avs}$ is the ratio of the power available from the two- network to the power available from the source. This assumes conjugate matching of both source and the load, and depends on Z_S , but not Z_L . Define Transducer power gain. (Nov 2013 & May 2017)/	Most RF an HBTs, Si M are rugged, integrated ci wide range c high power high frequer is steadily re List out the i. Maxin ii. Mini iii. Stabl iv. Input	d microwave an OSFETs, GaAs low-cost, and ircuitry. Transis of applications r capacity. Althou cy applications, educing the need usual microwa num power gain mum noise figu le gain, i.e., no o t and Output VS	mplifiers today use MESFETs, or GaAs reliable and can be stor amplifiers can be equiring small size, ugh microwave tube , continuing improve for microwave tube to amplifier design re for the first stage. oscillations.	transistor device s or GaN HEMT easily integrate be used at freque low noise figure es are still usefu ement in the perf es. a goals.	s such as Si BJT s. Microwave tran ed in both hybric encies in excess , broad bandwidtl l for very high pe formance of micro	Ts, GaAs or S nsistor ampli and monol of 100 GHz h, and medium ower and/or owave transis
vii. Insensitivity to nominal changes or variations in the device S_{ij} parameters. Define Power gain. <i>Power gain</i> = $G = P_L/P_{in}$ is the ratio of power dissipated in the load Z_L to the power deliver the input of the two-port network. This gain is independent of Z_S , although the characteristic some active devices may be dependent on Z_S . Define Available power gain. (Dec 2015) (Nov 20) <i>Available power gain</i> = $G_A = P_{avn}/P_{avs}$ is the ratio of the power available from the two- network to the power available from the source. This assumes conjugate matching of both source and the load, and depends on Z_S , but not Z_L . Define Transducer power gain. (Nov 2013 & May 2017)/	Most RF an HBTs, Si M are rugged, integrated ci wide range c high power high frequer is steadily re List out the i. Maxin ii. Mini iii. Stabl iv. Input v. Adec	d microwave an OSFETs, GaAs low-cost, and ircuitry. Transis of applications r capacity. Althoucy applications ducing the need usual microwa num power gain mum noise figu le gain, i.e., no co t and Output VS quate gain and u	mplifiers today use MESFETs, or GaAs reliable and can be stor amplifiers can be equiring small size, ugh microwave tube , continuing improve for microwave tube we amplifier design the re for the first stage. oscillations. SWR as close to unity niformity of gain ov	transistor device s or GaN HEMT easily integrate be used at freque low noise figure es are still usefu ement in the perf es. a goals. y as possible. er a specified fre	s such as Si BJT s. Microwave tran ed in both hybrid encies in excess of , broad bandwidth l for very high po formance of micro	Ts, GaAs or S nsistor ampli- l and monol of 100 GHz h, and medium ower and/or owave transis
Define Power gain. <i>Power gain</i> = $G = P_L/P_{in}$ is the ratio of power dissipated in the load Z_L to the power deliver the input of the two-port network. This gain is independent of Z_S , although the characteristic some active devices may be dependent on Z_S . Define Available power gain = $G_A = P_{avn}/P_{avs}$ is the ratio of the power available from the two- network to the power available from the source. This assumes conjugate matching of both source and the load, and depends on Z_S , but not Z_L . Define Transducer power gain. (Nov 2013 & May 2017)/	Most RF an HBTs, Si M are rugged, integrated ci wide range of high power high frequer is steadily re List out the i. Maxin ii. Mini iii. Stabl iv. Input v. Adeo vi. Phase	d microwave an OSFETs, GaAs low-cost, and ircuitry. Transis of applications r capacity. Althou cy applications ducing the need usual microwa num power gain mum noise figu le gain, i.e., no co t and Output VS quate gain and u e response that i	mplifiers today use MESFETs, or GaAs reliable and can be stor amplifiers can be equiring small size, ugh microwave tube , continuing improve for microwave tube to amplifier design and re for the first stage. oscillations. SWR as close to unity niformity of gain ov is a linear function o	transistor device s or GaN HEMT easily integrate be used at freque low noise figure es are still useful ement in the perf es. a goals. y as possible. er a specified free f ω (no distortio	s such as Si BJT s. Microwave tran ed in both hybrid encies in excess of , broad bandwidth l for very high po formance of micro equency band. n, only group dela	Ts, GaAs or S nsistor amplit 1 and monol of 100 GHz h, and medium ower and/or owave transis
<i>Power gain</i> = $G = P_L/P_{in}$ is the ratio of power dissipated in the load Z_L to the power deliver the input of the two-port network. This gain is independent of Z_S , although the characteristic some active devices may be dependent on Z_S . Define Available power gain = $G_A = P_{avn}/P_{avs}$ is the ratio of the power available from the two- network to the power available from the source. This assumes conjugate matching of both source and the load, and depends on Z_S , but not Z_L . Define Transducer power gain . (Nov 2013 & May 2017)/	Most RF an HBTs, Si M are rugged, integrated ci wide range of high power high frequen is steadily re List out the i. Maxin ii. Mini iii. Stabl iv. Input v. Adeo vi. Phase vii. Inser	d microwave an OSFETs, GaAs low-cost, and ircuitry. Transis of applications r capacity. Althous educing the need usual microwa num power gain mum noise figu le gain, i.e., no cost t and Output VS quate gain and u e response that in sitivity to nomi	mplifiers today use MESFETs, or GaAs reliable and can be stor amplifiers can be equiring small size, ugh microwave tube , continuing improved for microwave tube to amplifier design to re for the first stage. oscillations. SWR as close to unity niformity of gain ov is a linear function of anal changes or varia	transistor device s or GaN HEMT easily integrate be used at freque low noise figure es are still useful ement in the perfect s. goals. y as possible. er a specified fre f ω (no distortio tions in the device	s such as Si BJT s. Microwave tran ed in both hybrid encies in excess of , broad bandwidth l for very high po formance of micro equency band. n, only group dela ce S _{ij} parameters.	Ts, GaAs or S nsistor ampli 1 and monol of 100 GHz h, and medium ower and/or owave transis
The input of the two-port network. This gain is independent of Z_S , although the characteristic some active devices may be dependent on Z_S . Define Available power gain = $G_A = P_{avn}/P_{avs}$ is the ratio of the power available from the two- network to the power available from the source. This assumes conjugate matching of both source and the load, and depends on Z_S , but not Z_L . Define Transducer power gain. (Nov 2013 & May 2017) /	Most RF an HBTs, Si M are rugged, integrated ci wide range of high power high frequer is steadily re List out the i. Maxin ii. Mini iii. Stabl iv. Input v. Adec vi. Phase vii. Inser	d microwave an OSFETs, GaAs low-cost, and ircuitry. Transis of applications r capacity. Althous educing the need usual microwa num power gain mum noise figu le gain, i.e., no of t and Output VS quate gain and u e response that in sitivity to nomi er gain.	mplifiers today use MESFETs, or GaAs reliable and can be stor amplifiers can be equiring small size, ugh microwave tube , continuing improve for microwave tube to amplifier design re for the first stage. oscillations. WR as close to unity niformity of gain ov is a linear function of anal changes or varia	transistor device s or GaN HEMT easily integrate be used at freque low noise figure es are still usefu ement in the perfect s. goals. y as possible. er a specified free f ω (no distortio	s such as Si BJT s. Microwave tran ed in both hybrid encies in excess of broad bandwidth for very high po- formance of micro equency band. n, only group dela- ce S _{ij} parameters.	Ts, GaAs or S nsistor amplit 1 and monol of 100 GHz h, and medium ower and/or owave transis
Define Available power gain. (Dec 2015) (Nov 20) Available power gain = $G_A = P_{avn}/P_{avs}$ is the ratio of the power available from the two- network to the power available from the source. This assumes conjugate matching of both source and the load, and depends on Z_S , but not Z_L . Define Transducer power gain. (Nov 2013 & May 2017)/	Most RF an HBTs, Si M are rugged, integrated cr wide range of high power high frequer is steadily re List out the i. Maxin ii. Mini iii. Stabl iv. Input v. Adec vi. Phase vii. Inser Define Power gain the input of	Id microwave an OSFETs, GaAs low-cost, and ircuitry. Transis of applications r capacity. Althou- ncy applications, educing the need usual microwa num power gain mum noise figu- le gain, i.e., no of t and Output VS quate gain and u e response that in instituity to nomi- er gain. $= G = P_L/P_{in}$ is the two port response to the set of the set	mplifiers today use i MESFETs, or GaAs reliable and can be stor amplifiers can be equiring small size, ugh microwave tube , continuing improve for microwave tube to amplifier design re for the first stage. oscillations. SWR as close to unity niformity of gain ov is a linear function of anal changes or varia	transistor device s or GaN HEMT easily integrate be used at freque low noise figure es are still useful ement in the perfect s. a goals. y as possible. er a specified free f ω (no distortion tions in the device dissipated in the	s such as Si BJT s. Microwave transed in both hybrid encies in excess of , broad bandwidth l for very high pot formance of micro formance of micro equency band. n, only group delation ce S_{ij} parameters.	Ss, GaAs or S nsistor amplit 1 and monol of 100 GHz h, and medium ower and/or owave transis ay).
Available power gain = $G_A = P_{avn}/P_{avs}$ is the ratio of the power available from the two- network to the power available from the source. This assumes conjugate matching of both source and the load, and depends on Z_S , but not Z_L . Define Transducer power gain. (Nov 2013 & May 2017) /	Most RF an HBTs, Si M are rugged, integrated ci- wide range of high power high frequer is steadily re List out the i. Maxin ii. Mini iii. Stabl iv. Input v. Adec vi. Phase vii. Inser Define Power power gain the input of some active	Id microwave an OSFETs, GaAs low-cost, and ircuitry. Transis of applications r capacity. Althou- ney applications, educing the need usual microwa num power gain mum noise figu le gain, i.e., no con- t and Output VS quate gain and u e response that in instituity to nomini- er gain. $= G = P_L/P_{in}$ is the two-port need devices may be	mplifiers today use mplifiers today use MESFETs, or GaAs reliable and can be stor amplifiers can be equiring small size, ugh microwave tube , continuing improve for microwave tube re for the first stage. Descillations. WR as close to unity niformity of gain ov is a linear function of anal changes or varia the ratio of power of etwork. This gain is dependent on Za	transistor device s or GaN HEMT easily integrate be used at freque low noise figure es are still useful ement in the perfect s. goals. y as possible. er a specified free f ω (no distortio tions in the device dissipated in the independent of	s such as Si BJT s. Microwave transed in both hybrid encies in excess of broad bandwidth for very high po- formance of micro equency band. n, only group dela- ce S_{ij} parameters.	rs, GaAs or S nsistor amplit 1 and monol of 100 GHz h, and medium ower and/or owave transis awave transis
network to the power available from the source. This assumes conjugate matching of both source and the load, and depends on Z_s , but not Z_L . Define Transducer power gain. (Nov 2013 & May 2017)/	Most RF an HBTs, Si M are rugged, integrated c wide range of high power high frequer is steadily re List out the i. Maxin ii. Mini iii. Stabl iv. Input v. Adec vi. Phase vii. Inser Define Power some active	Id microwave an OSFETs, GaAs low-cost, and ircuitry. Transis of applications r capacity. Although the need usual microwa num power gain mum noise figu- le gain, i.e., no of t and Output VS quate gain and u- e response that in- nsitivity to nomi- er gain. $= G = P_L/P_{in}$ is the two-port ne- devices may be- lable power gain	mplifiers today use in MESFETs, or GaAs reliable and can be stor amplifiers can be equiring small size, ugh microwave tube, continuing improved for microwave tube, continuing improved for microwave tube amplifier design. The for the first stage. SWR as close to unity is a linear function of gain over the first stage. The ratio of power of the first gain is dependent on Z_s . The for the first gain is dependent on Z_s .	transistor device s or GaN HEMT easily integrate be used at freque low noise figure es are still useful ement in the perfect s. goals. y as possible. er a specified free f ω (no distortio tions in the device dissipated in the independent of	s such as Si BJT s. Microwave transed in both hybrid encies in excess of , broad bandwidth l for very high po- formance of micro formance of micro equency band. n, only group dela ce S_{ij} parameters.	Ss, GaAs or S nsistor amplit and monol of 100 GHz h, and medium ower and/or owave transis awave transis ay).
source and the load, and depends on Z _s , but not Z _L . Define Transducer power gain. (Nov 2013 & May 2017)/	Most RF an HBTs, Si M are rugged, integrated c wide range of high power high frequer is steadily re List out the i. Maxin ii. Mini iii. Stabl iv. Input v. Adeo vi. Phase vii. Inser Define Power some active Define Avai Available m	Id microwave an OSFETs, GaAs low-cost, and ircuitry. Transis of applications r capacity. Altho- ncy applications, educing the need usual microwa num power gain imum noise figu le gain, i.e., no of t and Output VS quate gain and u e response that in nsitivity to nomi er gain. $= G = P_L/P_{in}$ is the two-port ne devices may be ilable power gain = G	mplifiers today use in MESFETs, or GaAs reliable and can be stor amplifiers can be equiring small size, ugh microwave tube, continuing improved for microwave tube of the microwave tube of the microwave tube of the microwave tube of the first stage. SwR as close to unity niformity of gain over a solution of the ratio of power of the ratio of the ratis of the	transistor device s or GaN HEMT easily integrate be used at freque low noise figure es are still useful ement in the perfect s. goals. y as possible. er a specified free f ω (no distortio tions in the device dissipated in the independent of 20) ratio of the poy	s such as Si BJT s. Microwave transed in both hybrid encies in excess of broad bandwidth for very high po- formance of micro formance of micro equency band. n, only group dela ce S_{ij} parameters. load Z_L to the po- Z_S , although the op-	rs, GaAs or S nsistor amplit 1 and monol of 100 GHz h, and medium ower and/or owave transis ay).
Define Transducer power gain. (Nov 2013 & May 2017)/	Most RF an HBTs, Si M are rugged, integrated c: wide range of high power high frequer is steadily re List out the i. Maxin ii. Mini iii. Stabl iv. Input v. Adec vi. Phase vii. Inser Define Power some active Define Avai Available po network to the	Id microwave an OSFETs, GaAs low-cost, and ircuitry. Transis of applications r capacity. Altho- ncy applications, educing the need usual microwa num power gain mum noise figu le gain, i.e., no c t and Output VS quate gain and u e response that in nsitivity to nomi er gain. $= G = P_L/P_{in}$ is the two-port ne devices may be ilable power gain = G the power avail	mplifiers today use in MESFETs, or GaAs reliable and can be stor amplifiers can be equiring small size, ugh microwave tube, continuing improved for microwave tube, context, the state of microwave tube, context, the microwave	transistor device s or GaN HEMT easily integrate be used at freque low noise figure es are still useful ement in the perfe- s. goals. y as possible. er a specified free f ω (no distortion tions in the device dissipated in the independent of 20) ratio of the pow- es. This assumes	s such as Si BJT s. Microwave transed in both hybrid encies in excess of broad bandwidth for very high performance of micro formance of micro formance of micro equency band. n, only group delated ce S_{ij} parameters.	Ts, GaAs or S nsistor amplit 1 and monolit of 100 GHz h, and medium ower and/or owave transis ay).
	Most RF an HBTs, Si M are rugged, integrated c wide range of high power high frequer is steadily re List out the i. Maxin ii. Mini iii. Stabl iv. Input v. Adeo vi. Phase vii. Inser Define Power <i>Power gain</i> the input of some active Define Avai <i>Available po</i> network to a	Id microwave an OSFETs, GaAs low-cost, and ircuitry. Transis of applications r capacity. Altho- ncy applications, educing the need usual microwa num power gain mum noise figu le gain, i.e., no co t and Output VS quate gain and u e response that in nsitivity to nomi er gain. $= G = P_L/P_{in}$ is the two-port ne devices may be ilable power gain = G the power avail he load, and dep	mplifiers today use in MESFETs, or GaAs reliable and can be stor amplifiers can be equiring small size, ugh microwave tube, continuing improved for microwave tube of the microwave tube of the microwave tube of the first stage. The for the first stage of the first stage. SWR as close to unity is a linear function of the first stage of the ratio of power of the first stage of the ratio of power of the first stage of the ratio of power of the first stage of the ratio of power of the first stage. This gain is dependent on Z_S . The first stage of the first stage of the first stage of the ratio of power of the first stage of the first	transistor device s or GaN HEMT easily integrate be used at freque low noise figure es are still useful ement in the perfect s. goals. y as possible. er a specified free f ω (no distortio tions in the device dissipated in the independent of 20) ratio of the power. This assumes Z_L .	s such as Si BJT s. Microwave transed in both hybrid encies in excess of , broad bandwidth 1 for very high po- formance of micro formance of micro equency band. n, only group dela ce S_{ij} parameters. load Z_L to the po- Z_S , although the of wer available from s conjugate match	rs, GaAs or S nsistor amplit 1 and monol of 100 GHz h, and medium ower and/or owave transis ay). ower delivered characteristic om the two-p hing of both
Define transducer power gain of amplifier. (NOV/DEC 2021) Transducer power gain = $C_{-} = P_{-}/P_{-}$ is the ratio of the resumed allower delivered to the local to the	Most RF an HBTs, Si M are rugged, integrated c wide range o high power high frequer is steadily re List out the i. Maxin ii. Mini iii. Stabl iv. Input v. Adec vi. Phase vii. Inser Define Power Some active Define Avai Available po network to a source and th Define Trar	Id microwave an OSFETs, GaAs low-cost, and ircuitry. Transis of applications r capacity. Altho- ncy applications educing the need usual microwa num power gain mum noise figu le gain, i.e., no of t and Output VS quate gain and u e response that in nsitivity to nomi er gain. $= G = P_L/P_{in}$ is the two-port need devices may be ilable power gain = G the power avail he load, and dep isducer power	mplifiers today use in MESFETs, or GaAs reliable and can be stor amplifiers can be equiring small size, ugh microwave tube, continuing improved for microwave tube, contained for the first stage. Such as close to unity, niformity of gain ov is a linear function of inal changes or varia the ratio of power of the ratio of the r	transistor device s or GaN HEMT easily integrate be used at freque low noise figure es are still useful ement in the perfect s. goals. y as possible. er a specified free f ω (no distortion tions in the device dissipated in the independent of 20) ratio of the power. This assumest Z_L . May 2017)/	s such as Si BJT s. Microwave transed in both hybrid encies in excess of broad bandwidth for very high performance of micro formance of micro equency band. n, only group delated ce S_{ij} parameters. load Z_L to the performance of Z_S , although the of wer available from the second	rs, GaAs or S nsistor amplit 1 and monol of 100 GHz h, and medium ower and/or owave transis ay).
<i>I ransaucer power gain</i> = $G_T = P_L/P_{avs}$ is the ratio of the power delivered to the load to the power available from the source. This depends on both Z_r and Z_r .	Most RF an HBTs, Si M are rugged, integrated c: wide range of high power high frequer is steadily re List out the i. Maxin ii. Mini iii. Stabl iv. Input v. Adec vi. Phase vii. Inser Define Power Power gain the input of some active Define Avai Available po network to the source and the Define Trans Define trans	Id microwave an OSFETs, GaAs low-cost, and ircuitry. Transis of applications r capacity. Altho- ncy applications educing the need usual microwa num power gain mum noise figu le gain, i.e., no of t and Output VS quate gain and u e response that in nsitivity to nomi er gain. $= G = P_L/P_{in}$ is the two-port need devices may be lable power gain = G the power avail he load, and dep sducer power g	mplifiers today use in MESFETs, or GaAs reliable and can be stor amplifiers can be equiring small size, ugh microwave tube, continuing improved for microwave tube, continuing improved for microwave tube amplifier design. The for the first stage. SWR as close to unity informity of gain over the first stage. SWR as close to unity is a linear function of the ratio of power of the first stage is a linear function of the ratio of power of the ratio o	transistor device s or GaN HEMT easily integrate be used at freque low noise figure es are still useful ement in the perfect s. goals. y as possible. er a specified free f ω (no distortio tions in the device dissipated in the independent of 20) ratio of the power <i>Z</i> _L . May 2017)/ OV/DEC 2021)	s such as Si BJT s. Microwave transed in both hybrid encies in excess of broad bandwidth for very high performance of micro formance of micro equency band. n, only group delates ce S_{ij} parameters. load Z_L to the performance Z_S , although the of wer available from s conjugate match	rs, GaAs or S nsistor amplit 1 and monol of 100 GHz h, and medium ower and/or owave transis ay).

EC8701	1-Antennas and Microwave Engineering Department of ECE 2022-2023
15.	State the conditions that are necessary and sufficient for unconditional stability.(May 2019)
	In K- Δ test, it can be shown that a device will be unconditionally stable if Rollet's condition,
	defined as
	$1 - S_{11} ^2 - S_{22} ^2 + \Delta ^2$
	$K = \frac{1}{2 S_{12}S_{22} } > 1$
	along with the auxiliary condition that
	$ \Lambda = S_{11}S_{22} - S_{12}S_{21} \le 1$ are simultaneously satisfied
16	Image: Structure of the state of the structure of the str
16.	what is the idea bening LNA design?
	Besides stability and gain, another important design consideration for a microwave amplifier
	is its noise figure. In receiver applications especially it is often required to have a preamplifier
	with as low a noise figure as possible since the first stage of a receiver front end has the dominant
	effect on the noise performance of the overall system. Generally, it is not possible to obtain both
	minimum noise figure and maximum gain for an amplifier, so some sort of compromise must be
	made. This can be done by using constant-gain circles and circles of constant noise figure to select
	a usable trade-off between noise figure and gain.
17.	Define noise figure. (Nov 20)
	Noise figure of the component is a measure of the degradation in the signal-to-noise ratio between
	the input and output of the component. The signal-to-noise ratio is the ratio of desired signal
	power to undesired noise power, and so is dependent on the signal power. When noise and a
	desired signal are applied to the input of a noiseless network, both noise and signal will be
	attenuated or amplified by the same factor, so that the signal-to-noise ratio will be unchanged.
	However, if the network is noisy, the output noise power will be increased more than the output
	signal power, so that the output signal-to-noise ratio will be reduced. The noise figure, F, is a
	measure of this reduction in signal-to-noise ratio, and is defined as
	signal – to – noise ratio at input $\frac{S_i}{N}$
	$F = \frac{Signal}{signal} + \frac{1}{s} + $
	$signal - to - noise ratio at output 3_0/N_1$
	where S_i . N_i are the input signal and noise powers, and S_0 . N_0 are the output signal and noise
	powers.
18.	Give the noise figure expression for a cascaded system.
	$F_2 - 1$, $F_3 - 1$,
	$F_{cas} = F_1 + \frac{G_1}{G_1} + \frac{G_1}{G_2} + \cdots$
19.	What is role of power amplifiers in transmitters?
	Power amplifiers are used in the final stages of radar and radio transmitters to increase the radiated
	power level. Typical output powers may be on the order of 100–500 mW for mobile voice or data
	communications systems, or in the range of 1–100 W for radar or fixed-point radio systems.
20.	List out the types and characteristics of power amplifiers.
	• Class A amplifiers are inherently linear circuits, where the transistor is biased to conduct over the
	entire range of the input signal cycle. Because of this, class A amplifiers have a theoretical
	maximum efficiency of 50% Most small-signal and low-noise amplifiers operate as class A
	oirquito
	- In contrast, the transistencia contrast Documentificación bierrad to construct contra decime constructión fotos
	• In contrast, the transistor in a class B amplifier is blased to conduct only during one-half of the
	input signal cycle. Usually two complementary transistors are operated in a class B push-pull
	amplifier to provide amplification over the entire cycle. The theoretical efficiency of a class B
	amplifier is 78%.
	• Class C amplifiers are operated with the transistor near cutoff for more than half of the input
	signal cycle, and generally use a resonant circuit in the output stage to recover the
	fundamental Class C amplifiers can achieve afficiencies near 10004 but can only be used with
	rundamental. Class C amprillers can achieve efficiencies near 100% but can only be used with
	constant envelope modulations.
	• Higher classes, such as class D, E, F, and S, use the transistor as a switch to pump a highly
	resonant tank circuit, and may achieve very high efficiencies

	Define a mixer.
	A mixer is a three-port device that uses a nonlinear or time-varying element to achieve frequency
	conversion. An ideal mixer produces an output consisting of the sum and difference frequencies of
	its two input signals. Operation of practical RF and microwave mixers is usually based on the
	nonlinearity provided by either a diode or a transistor. As we have seen, a nonlinear component
	can generate a wide variety of harmonics and other products of input frequencies, so filtering must
	be used to select the desired frequency components.
22.	The IS-54 digital cellular telephone system uses a receive frequency band of 869–894 MHz,
	with a first IF frequency of 87 MHz and a channel bandwidth of 30 kHz. What are the two
	possible ranges for the LO frequency? If the upper LO frequency range is used, determine
	the image frequency range. Does the image frequency fall within the receive passband?
	The two possible LO frequency ranges are $f_{1} = f_{2} = (860 \text{ to } 804) + 87 = 0.56 \text{ to } 0.81 \text{ MHz and } 782 \text{ to } 807 \text{ MHz}$
	$J_{LO} - J_{RF} \pm J_{IF} = (809 \text{ to } 894) \pm 87 = 930 \text{ to } 981 \text{ WH12 and } 782 \text{ to } 807 \text{ WH12}$
	$f_{\rm m} = f_{\rm m} = f_{\rm m} = (860 \text{ to } 804) = (956 \text{ to } 981) = -87 \text{ MHz}$
	JIF - JRF JLO = (800 to 804) (350 to 981) = -87 WHZ, The PE image frequency range is
	$f_{\rm IM} = f_{\rm IC} - f_{\rm IE} = (956 \text{ to } 981) + 87 = 1043 \text{ to } 1068 \text{ MHz}$
	$f_{\text{IM}} = f_{\text{IO}} = f_{I$
23	Define conversion loss in a mixer
23.	Conversion Loss (CL) of a mixer is generally defined in dB as the ratio of supplied input power
	P_{PE} over the obtained IF power P_{IE} . When dealing with BITs and FETs, it is preferable to specify a
	conversion gain (CG) defined as the inverse of the power ratio
	conversion guin (00) defined us the inverse of the power funct.
	$CL = 10\log\left(\frac{P_{RF}}{P_{RF}}\right)$
	$CL = 1010g(P_{IF})$
24.	How are oscillators designed for microwave frequencies?
	A solid-state oscillator uses an active nonlinear device, such as a diode or transistor, in l
	conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic
	conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low poice performance.
	conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low noise performance.
	conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low noise performance. At higher frequencies, diodes or transistors biased to a negative resistance operating point can be used with cavity transmission line or dielectric resonators to produce fundamental
	conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low noise performance. At higher frequencies, diodes or transistors biased to a negative resistance operating point can be used with cavity, transmission line, or dielectric resonators to produce fundamental frequency oscillations up to 100 GHz
	conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low noise performance. At higher frequencies, diodes or transistors biased to a negative resistance operating point can be used with cavity, transmission line, or dielectric resonators to produce fundamental frequency oscillations up to 100 GHz.
	conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low noise performance. At higher frequencies, diodes or transistors biased to a negative resistance operating point can be used with cavity, transmission line, or dielectric resonators to produce fundamental frequency oscillations up to 100 GHz. Alternatively, frequency multipliers, in conjunction with a lower frequency source, can be used to produce power at millimeter wave frequencies.
25.	 conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low noise performance. At higher frequencies, diodes or transistors biased to a negative resistance operating point can be used with cavity, transmission line, or dielectric resonators to produce fundamental frequency oscillations up to 100 GHz. Alternatively, frequency multipliers, in conjunction with a lower frequency source, can be used to produce power at millimeter wave frequencies.
25.	 conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low noise performance. At higher frequencies, diodes or transistors biased to a negative resistance operating point can be used with cavity, transmission line, or dielectric resonators to produce fundamental frequency oscillations up to 100 GHz. Alternatively, frequency multipliers, in conjunction with a lower frequency source, can be used to produce power at millimeter wave frequencies. Compare and contrast diode-based and transistor-based oscillators.
25.	 conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low noise performance. At higher frequencies, diodes or transistors biased to a negative resistance operating point can be used with cavity, transmission line, or dielectric resonators to produce fundamental frequency oscillations up to 100 GHz. Alternatively, frequency multipliers, in conjunction with a lower frequency source, can be used to produce power at millimeter wave frequencies. Compare and contrast diode-based and transistor-based oscillators.
25.	 conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low noise performance. At higher frequencies, diodes or transistors biased to a negative resistance operating point can be used with cavity, transmission line, or dielectric resonators to produce fundamental frequency oscillations up to 100 GHz. Alternatively, frequency multipliers, in conjunction with a lower frequency source, can be used to produce power at millimeter wave frequencies. Compare and contrast diode-based and transistor-based oscillators. Transistor oscillators generally have lower frequency and power capabilities than diode sources (e.g., tunnel, Gunn, or IMPATT diodes), but offer several advantages over diodes.
25.	 conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low noise performance. At higher frequencies, diodes or transistors biased to a negative resistance operating point can be used with cavity, transmission line, or dielectric resonators to produce fundamental frequency oscillations up to 100 GHz. Alternatively, frequency multipliers, in conjunction with a lower frequency source, can be used to produce power at millimeter wave frequencies. Compare and contrast diode-based and transistor-based oscillators. Transistor oscillators generally have lower frequency and power capabilities than diode sources (e.g., tunnel, Gunn, or IMPATT diodes), but offer several advantages over diodes. First, oscillators using transistors are readily compatible with monolithic integrated
25.	 conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low noise performance. At higher frequencies, diodes or transistors biased to a negative resistance operating point can be used with cavity, transmission line, or dielectric resonators to produce fundamental frequency oscillations up to 100 GHz. Alternatively, frequency multipliers, in conjunction with a lower frequency source, can be used to produce power at millimeter wave frequencies. Compare and contrast diode-based and transistor-based oscillators. Transistor oscillators generally have lower frequency and power capabilities than diode sources (e.g., tunnel, Gunn, or IMPATT diodes), but offer several advantages over diodes. First, oscillators using transistors are readily compatible with monolithic integrated circuitry, allowing easy integration with transistor amplifiers and mixers, while diode devices are
25.	 conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low noise performance. At higher frequencies, diodes or transistors biased to a negative resistance operating point can be used with cavity, transmission line, or dielectric resonators to produce fundamental frequency oscillations up to 100 GHz. Alternatively, frequency multipliers, in conjunction with a lower frequency source, can be used to produce power at millimeter wave frequencies. Compare and contrast diode-based and transistor-based oscillators. Transistor oscillators generally have lower frequency and power capabilities than diode sources (e.g., tunnel, Gunn, or IMPATT diodes), but offer several advantages over diodes. First, oscillators using transistors are readily compatible with monolithic integrated circuitry, allowing easy integration with transistor amplifiers and mixers, while diode devices are often less compatible.
25.	 conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low noise performance. At higher frequencies, diodes or transistors biased to a negative resistance operating point can be used with cavity, transmission line, or dielectric resonators to produce fundamental frequency oscillations up to 100 GHz. Alternatively, frequency multipliers, in conjunction with a lower frequency source, can be used to produce power at millimeter wave frequencies. Compare and contrast diode-based and transistor-based oscillators. Transistor oscillators generally have lower frequency and power capabilities than diode sources (e.g., tunnel, Gunn, or IMPATT diodes), but offer several advantages over diodes. First, oscillators using transistors are readily compatible with monolithic integrated circuitry, allowing easy integration with transistor amplifiers and mixers, while diode devices are often less compatible. In addition, a transistor oscillator circuit is much more flexible than a diode source. This is a didition, a transistor oscillator circuit is much more flexible than a diode source.
25.	 conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low noise performance. At higher frequencies, diodes or transistors biased to a negative resistance operating point can be used with cavity, transmission line, or dielectric resonators to produce fundamental frequency oscillations up to 100 GHz. Alternatively, frequency multipliers, in conjunction with a lower frequency source, can be used to produce power at millimeter wave frequencies. Compare and contrast diode-based and transistor-based oscillators. Transistor oscillators generally have lower frequency and power capabilities than diode sources (e.g., tunnel, Gunn, or IMPATT diodes), but offer several advantages over diodes. First, oscillators using transistors are readily compatible with monolithic integrated circuitry, allowing easy integration with transistor amplifiers and mixers, while diode devices are often less compatible. In addition, a transistor oscillator circuit is much more flexible than a diode source. This is because the negative resistance oscillation mechanism of a diode is determined and limited by the lower field of the dist of
25.	 conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low noise performance. At higher frequencies, diodes or transistors biased to a negative resistance operating point can be used with cavity, transmission line, or dielectric resonators to produce fundamental frequency oscillations up to 100 GHz. Alternatively, frequency multipliers, in conjunction with a lower frequency source, can be used to produce power at millimeter wave frequencies. Compare and contrast diode-based and transistor-based oscillators. Transistor oscillators generally have lower frequency and power capabilities than diode sources (e.g., tunnel, Gunn, or IMPATT diodes), but offer several advantages over diodes. First, oscillators using transistors are readily compatible with monolithic integrated circuitry, allowing easy integration with transistor amplifiers and mixers, while diode devices are often less compatible. In addition, a transistor oscillator circuit is much more flexible than a diode source. This is because the negative resistance oscillation mechanism of a diode is determined and limited by the physical characteristics of the device itself, while the operating characteristics of a transistor can be the the bigo metities of the device integrated to a metities of the device itself, while the operating characteristics of the device itself.
25.	 conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low noise performance. At higher frequencies, diodes or transistors biased to a negative resistance operating point can be used with cavity, transmission line, or dielectric resonators to produce fundamental frequency oscillations up to 100 GHz. Alternatively, frequency multipliers, in conjunction with a lower frequency source, can be used to produce power at millimeter wave frequencies. Compare and contrast diode-based and transistor-based oscillators. Transistor oscillators generally have lower frequency and power capabilities than diode sources (e.g., tunnel, Gunn, or IMPATT diodes), but offer several advantages over diodes. First, oscillators using transistor are readily compatible with monolithic integrated circuitry, allowing easy integration with transistor amplifiers and mixers, while diode devices are often less compatible. In addition, a transistor oscillator circuit is much more flexible than a diode source. This is because the negative resistance oscillation mechanism of a diode is determined and limited by the physical characteristics of the device itself, while the operating characteristics of a transistor can be adjusted to a greater degree by the bias point, as well as the source or load impedances presented to the davice.
25.	conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low noise performance. At higher frequencies, diodes or transistors biased to a negative resistance operating point can be used with cavity, transmission line, or dielectric resonators to produce fundamental frequency oscillations up to 100 GHz. Alternatively, frequency multipliers, in conjunction with a lower frequency source, can be used to produce power at millimeter wave frequencies. Compare and contrast diode-based and transistor-based oscillators. Transistor oscillators generally have lower frequency and power capabilities than diode sources (e.g., tunnel, Gunn, or IMPATT diodes), but offer several advantages over diodes. First, oscillators using transistors are readily compatible with monolithic integrated circuitry, allowing easy integration with transistor amplifiers and mixers, while diode devices are often less compatible. In addition, a transistor oscillator circuit is much more flexible than a diode source. This is because the negative resistance oscillation mechanism of a diode is determined and limited by the physical characteristics of the device itself, while the operating characteristics of a transistor can be adjusted to a greater degree by the bias point, as well as the source or load impedances presented to the device.
25.	 conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low noise performance. At higher frequencies, diodes or transistors biased to a negative resistance operating point can be used with cavity, transmission line, or dielectric resonators to produce fundamental frequency oscillations up to 100 GHz. Alternatively, frequency multipliers, in conjunction with a lower frequency source, can be used to produce power at millimeter wave frequencies. Compare and contrast diode-based and transistor-based oscillators. Transistor oscillators generally have lower frequency and power capabilities than diode sources (e.g., tunnel, Gunn, or IMPATT diodes), but offer several advantages over diodes. First, oscillators using transistors are readily compatible with monolithic integrated circuitry, allowing easy integration with transistor amplifiers and mixers, while diode devices are often less compatible. In addition, a transistor oscillator circuit is much more flexible than a diode source. This is because the negative resistance oscillation mechanism of a diode is determined and limited by the physical characteristics of the device itself, while the operating characteristics of a transistor can be adjusted to a greater degree by the bias point, as well as the source or load impedances presented to the device.
25.	 conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low noise performance. At higher frequencies, diodes or transistors biased to a negative resistance operating point can be used with cavity, transmission line, or dielectric resonators to produce fundamental frequency oscillations up to 100 GHz. Alternatively, frequency multipliers, in conjunction with a lower frequency source, can be used to produce power at millimeter wave frequencies. Compare and contrast diode-based and transistor-based oscillators. Transistor oscillators generally have lower frequency and power capabilities than diode sources (e.g., tunnel, Gunn, or IMPATT diodes), but offer several advantages over diodes. First, oscillators using transistors are readily compatible with monolithic integrated circuitry, allowing easy integration with transistor amplifiers and mixers, while diode devices are often less compatible. In addition, a transistor oscillator circuit is much more flexible than a diode source. This is because the negative resistance oscillation mechanism of a diode is determined and limited by the physical characteristics of the device itself, while the operating characteristics of a transistor can be adjusted to a greater degree by the bias point, as well as the source or load impedances presented to the device. Transistor oscillator susually allow more control of the frequency of oscillation, temperature stability, and output noise than do diode sources.
25.	 conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low noise performance. At higher frequencies, diodes or transistors biased to a negative resistance operating point can be used with cavity, transmission line, or dielectric resonators to produce fundamental frequency oscillations up to 100 GHz. Alternatively, frequency multipliers, in conjunction with a lower frequency source, can be used to produce power at millimeter wave frequencies. Compare and contrast diode-based and transistor-based oscillators. Transistor oscillators generally have lower frequency and power capabilities than diode sources (e.g., tunnel, Gunn, or IMPATT diodes), but offer several advantages over diodes. First, oscillators using transistor are readily compatible with monolithic integrated circuitry, allowing easy integration with transistor amplifiers and mixers, while diode devices are often less compatible. In addition, a transistor oscillator circuit is much more flexible than a diode source. This is because the negative resistance oscillation mechanism of a diode is determined and limited by the physical characteristics of the device itself, while the operating characteristics of a transistor can be adjusted to a greater degree by the bias point, as well as the source or load impedances presented to the device. Transistor oscillators usually allow more control of the frequency of oscillation, temperature stability, and output noise than do diode sources.
25.	 conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with crystal resonators to provide improved frequency stability and low noise performance. At higher frequencies, diodes or transistors biased to a negative resistance operating point can be used with cavity, transmission line, or dielectric resonators to produce fundamental frequency oscillations up to 100 GHz. Alternatively, frequency multipliers, in conjunction with a lower frequency source, can be used to produce power at millimeter wave frequencies. Compare and contrast diode-based and transistor-based oscillators. Transistor oscillators generally have lower frequency and power capabilities than diode sources (e.g., tunnel, Gunn, or IMPATT diodes), but offer several advantages over diodes. First, oscillators using transistors are readily compatible with monolithic integrated circuitry, allowing easy integration with transistor amplifiers and mixers, while diode devices are often less compatible. In addition, a transistor oscillator circuit is much more flexible than a diode source. This is because the negative resistance oscillation mechanism of a diode is determined and limited by the physical characteristics of the device itself, while the operating characteristics of a transistor can be adjusted to a greater degree by the bias point, as well as the source or load impedances presented to the device. Transistor oscillators usually allow more control of the frequency of oscillation, temperature stability, and output noise than doide sources.

EC8701-Antennas and Microwave Engineering Department of ECE

EC8701	1-Antennas and Microwave Engineering Department of ECE 2022-2023
9.	Discuss in detail the steps involved in microwave filter design.
10.	(i) Write mathematical analysis of amplifier stability (Nov/Dec 2018, April/May 2019)
	(ii) A microwave amplifier is characterized by its S parameters. Derive equations for power gain,
	available gain and transducer gain. (May 2018) (May 2019) (Nov 2019)
11.	An RF Amplifier has the following S-parameters:
	$S_{11} = 0.3 \angle -70^{\circ}$, $S_{12} = 0.2 \angle -10^{\circ}$, $S_{21} = 3.5 \angle 85^{\circ}$ and $S_{22} = 0.4 \angle -45^{\circ}$. Furthermore, the
	input side of the amplifier is connected to a voltage source with $V_S = 5V \angle 0^0$ and source
	impedance $Z_S = 40\Omega$. The output is utilized to drive an antenna which has an impedance of
	$Z_L = 73\Omega$. Assuming that the S-parameters of the amplifier are measured with reference to a
	$Z_0 = 50\Omega$ characteristic impedance, find the following quantities: (a) Transducer gain G_T ,
	Unilateral transducer gain G_{TU} , available gain G_A , operating power gain G and (b) Power delivered
	to the load P_L , available power P_A and incident power to the amplifier P_{inc} . (Nov 2017) (Nov
	2019)
12.	Investigate the stability regions of a transistor whose S-parameters are recorded as follows: S ₁₂ =0.2 \lfloor -10°;S ₁₁ =0.7 \lfloor -70°;S ₂₁ =5.5 \lfloor 85°;S ₂₂ =0.7 \lfloor -45°; at 750 MHz. (Nov 2016)
13.	Explain in detail noise figure in an amplifier.
14.	Discuss in brief steps involved in the design of Low Noise Amplifiers.
15.	Elaborate on Microwave Power amplifiers and their efficiencies.
16.	Explain in detail the types of mixers in microwave circuits.
17.	Write a detailed note on microwave oscillator design.
18.	i) Write the mathematical analysis of amplifier stability.
	ii) Design a microwave amplifier for maximum transducer power gain. (Nov 20)
19.	Discuss various aspects of amplifier power relation for RF transistor amplifier design. (NOV/DEC
	2021)
20.	Explain the various stabilization methods and stability considerations for RF transistor amplifier
	design.(NOV/DEC 2021)